Exploiting Lithium-Depleted Cathode Materials for Solid-State Li Metal Batteries

被引:20
作者
Wang, Li-Ping [1 ,2 ]
Wang, Tai-Shan [1 ,2 ]
Yin, Ya-Xia [1 ,2 ]
Shi, Ji-Lei [1 ,2 ]
Wang, Chun-Ru [1 ,2 ]
Guo, Yu-Guo [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, CAS Res Educ Ctr Excellence Mol Sci, BNLMS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 北京市自然科学基金; 中国国家自然科学基金;
关键词
cathodes; Li0.33MnO2; lithium-depleted; solid-state lithium metal batteries; LI0.33MNO2; NANORODS; ELECTRODE MATERIAL; LIXMNO2; CATHODES; CAPACITY; CHALLENGES; STRATEGY;
D O I
10.1002/aenm.201901335
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium metal batteries (SSLMBs) may become one of the high-energy density storage devices for the next generation of electric vehicles. High safety and energy density can be achieved by utilizing solid electrolytes and Li metal anodes. Therefore, developing cathode materials which can match with Li metal anode efficiently is indispensable. In SSLMBs, Li metal anodes can afford the majority of active lithium ions, then lithium-depleted cathode materials can be a competitive candidate to achieve high gravimetric energy density as well as save lithium resources. Li0.33MnO2 lithium-depleted material is chosen, which also has the advantages of low synthesis temperature and low cost (cobalt-free). Notably, solid-state electrolyte can greatly alleviate the problem of manganese dissolution in the electrolyte, which is beneficial to improve the cycling stability of the battery. Thus, SSLMBs enable practical applications of lithium-depleted cathode materials.
引用
收藏
页数:6
相关论文
共 38 条
[31]   ELECTROCHEMISTRY OF MANGANESE-DIOXIDE IN LITHIUM NONAQUEOUS CELL .3. X-RAY DIFFRACTIONAL STUDY ON THE REDUCTION OF SPINEL-RELATED MANGANESE-DIOXIDE [J].
OHZUKU, T ;
KITAGAWA, M ;
HIRAI, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (03) :769-775
[32]   Synthesis of Li-Rich NMC: A Comprehensive Study [J].
Pimenta, Vanessa ;
Sathiya, Mariyappan ;
Batuk, Dmitry ;
Abakumoy, Artem M. ;
Giaume, Domitille ;
Cassaignon, Sophie ;
Larcher, Dominique ;
Tarascon, Jean-Marie .
CHEMISTRY OF MATERIALS, 2017, 29 (23) :9923-9936
[33]   Compatibility issues between electrodes and electrolytes in solid-state batteries [J].
Tian, Yaosen ;
Shi, Tan ;
Richards, William D. ;
Li, Juchuan ;
Kim, Jae Chul ;
Bo, Shou-Hang ;
Ceder, Gerbrand .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1150-1166
[34]   Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries [J].
Wang, Li-Ping ;
Wang, Tai-Shan ;
Zhang, Xu-Dong ;
Liang, Jia-Yan ;
Jiang, Li ;
Yin, Ya-Xia ;
Guo, Yu-Guo ;
Wang, Chun-Ru .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (35) :18464-18468
[35]   Characterizations on the structural and electronic properties of thermal lithiated Li0.33MnO2 [J].
Wei, Y. J. ;
Ehrenberg, H. ;
Kim, K. B. ;
Park, C. W. ;
Huang, Z. F. ;
Baehtz, C. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 470 (1-2) :273-277
[36]   Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects [J].
Xin, Sen ;
You, Ya ;
Wang, Shaofei ;
Gao, Hong-Cai ;
Yin, Ya-Xia ;
Guo, Yu-Guo .
ACS ENERGY LETTERS, 2017, 2 (06) :1385-1394
[37]   3-V OR 4-V LI-MN COMPOSITE AS CATHODE IN LI BATTERIES PREPARED BY LINO3 METHOD AS LI SOURCE [J].
YOSHIO, M ;
NOGUCHI, H ;
MIYASHITA, T ;
NAKAMURA, H ;
KOZAWA, A .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :483-486
[38]   Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries [J].
Zeng, Xian-Xiang ;
Yin, Ya-Xia ;
Li, Nian-Wu ;
Du, Wen-Cheng ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (49) :15825-15828