Estimation and variable selection for a class of quantile regression models with multiple index

被引:0
|
作者
Han, Cun [1 ]
Sun, Xiaofei [1 ]
Gao, Wenliang [1 ]
机构
[1] Shandong Technol & Business Univ, Sch Stat, Yantai, Peoples R China
关键词
Robustness; comprehensiveness; quantile regression; high dimensionality; partial linear single index model; NONCONCAVE PENALIZED LIKELIHOOD; EFFICIENT ESTIMATION; DIMENSION REDUCTION; SINGLE;
D O I
10.1080/03610926.2019.1633353
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression (QR) for a groupwise additive multiple-index models and its applications are investigated. We find that quantile regression can be used to recovery the directions of the index parameter vectors, and it does not involve the nonparametric treatment completely. Based on this useful finding, a iterative-free QR estimator for the partial linear single index model and a penalized QR for variable selection in the high dimensional sparse models are proposed respectively. Because of inheriting the superiorities of quantile regression, our methods are robust and comprehensive. Simulation studies and real data analysis are included to illustrate the finite sample performance.
引用
收藏
页码:180 / 202
页数:23
相关论文
共 50 条
  • [1] Estimation and variable selection in single-index composite quantile regression
    Liu, Huilan
    Yang, Hu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (09) : 7022 - 7039
  • [2] Estimation and variable selection for quantile partially linear single-index models
    Zhang, Yuankun
    Lian, Heng
    Yu, Yan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 162 : 215 - 234
  • [3] Simultaneous variable selection and parametric estimation for quantile regression
    Xiong, Wei
    Tian, Maozai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (01) : 134 - 149
  • [4] Simultaneous variable selection and parametric estimation for quantile regression
    Wei Xiong
    Maozai Tian
    Journal of the Korean Statistical Society, 2015, 44 : 134 - 149
  • [5] Quantile estimation and variable selection of partially linear single-index models
    Zhengzhou Institute of Information Science and Technology, vShangcheng Road, Zhengzhou, China
    不详
    Int. J. Appl. Math. Stat., 2013, 16 (421-437):
  • [6] Quantile regression and variable selection for single-index varying-coefficient models
    Yang, Jing
    Yang, Hu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4637 - 4653
  • [7] Variable selection of the quantile varying coefficient regression models
    Weihua Zhao
    Riquan Zhang
    Yazhao Lv
    Jicai Liu
    Journal of the Korean Statistical Society, 2013, 42 : 343 - 358
  • [8] Quantile function regression and variable selection for sparse models
    Yoshida, Takuma
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1196 - 1221
  • [9] Variable selection of varying coefficient models in quantile regression
    Noh, Hohsuk
    Chung, Kwanghun
    Van Keilegom, Ingrid
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1220 - 1238
  • [10] Variable selection of the quantile varying coefficient regression models
    Zhao, Weihua
    Zhang, Riquan
    Lv, Yazhao
    Liu, Jicai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 343 - 358