Interphase Evolution of a Lithium-Ion/Oxygen Battery

被引:45
|
作者
Elia, Giuseppe Antonio [1 ]
Bresser, Dominic [2 ,3 ,4 ]
Reiter, Jakub [5 ]
Oberhumer, Philipp [5 ]
Sun, Yang-Kook [6 ]
Scrosati, Bruno [7 ]
Passerini, Stefano [2 ,3 ]
Hassoun, Jusef [1 ,8 ]
机构
[1] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy
[2] Helmholtz Inst Ulm, Electrochem 1, D-89081 Ulm, Germany
[3] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[4] CEA CNRS UJF, CEA Grenoble, UMR 5819, INAC SPRAM PCI, F-38054 Grenoble 9, France
[5] BMW Grp, D-80788 Munich, Germany
[6] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[7] Elettrochim & Energia, I-00199 Rome, Italy
[8] Univ Ferrara, Dipartimento Sci Chim & Farmaceut, I-44121 Ferrara, Italy
关键词
Li/O-2; lithium-ion battery; ionic liquid electrolyte; high efficiency; safety; LIQUID-BASED ELECTROLYTES; ION OXYGEN BATTERY; POLYMER ELECTROLYTE; AIR BATTERIES; LI-O-2; STABILITY; ANODE;
D O I
10.1021/acsami.5b07414
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel lithium-ion/oxygen battery employing Pyr(14)FSI-LiTESI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.
引用
收藏
页码:22638 / 22643
页数:6
相关论文
共 50 条
  • [1] In Situ Interphase Engineering for beyond Lithium-Ion Battery Technologies
    Ling, Jinkiong
    Karuppiah, Chelladurai
    Misnon, Izan Izwan
    Lee, Hye Jin
    Yang, Chun-Chen
    Jose, Rajan
    ENERGY & FUELS, 2024, 38 (19) : 18292 - 18311
  • [2] Thermal and solid electrolyte interphase characterization of lithium-ion battery
    Chang, Chia-Chin
    Huang, Sin-Yi
    Chen, Wei-Hsin
    ENERGY, 2019, 174 : 999 - 1011
  • [3] Thermal decomposition mechanism of lithium methyl carbonate in solid electrolyte interphase layer of lithium-ion battery
    Kim, Minuk
    You, Hyo Min
    Jeon, Jaeyoung
    Lim, Jaeyoung
    Han, Yongha
    Kim, Kyeounghak
    Hong, Jongsup
    ENERGY STORAGE MATERIALS, 2024, 70
  • [4] A Review of Lithium-Ion Battery Fire Suppression
    Ghiji, Mohammadmahdi
    Novozhilov, Vasily
    Moinuddin, Khalid
    Joseph, Paul
    Burch, Ian
    Suendermann, Brigitta
    Gamble, Grant
    ENERGIES, 2020, 13 (19)
  • [5] A gel polymer membrane for lithium-ion oxygen battery
    Elia, Giuseppe Antonio
    Hassoun, Jusef
    SOLID STATE IONICS, 2016, 287 : 22 - 27
  • [6] Tailoring Low-Temperature Performance of a Lithium-Ion Battery via Rational Designing Interphase on an Anode
    Guo, Rude
    Che, Yanxia
    Lan, Guangyuan
    Lan, Jianlian
    Li, Jianhui
    Xing, Lidan
    Xu, K.
    Fan, Weizhen
    Yu, Le
    Li, Weishan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (41) : 38285 - 38293
  • [7] Preparation and Performance of Inorganic Composite Separators for Lithium-ion Battery
    Hu, Zhi-yu
    Li, Li-ping
    Zhou, Jian-jun
    Li, Lin
    ACTA POLYMERICA SINICA, 2015, (11) : 1288 - 1293
  • [8] Lithium-Ion Battery Systems
    Horiba, Tatsuo
    PROCEEDINGS OF THE IEEE, 2014, 102 (06) : 939 - 950
  • [9] Thermally durable electrolyte for lithium-ion battery
    Kawaji, Jun
    Okumura, Takefumi
    ELECTROCHIMICA ACTA, 2022, 434
  • [10] The Birth of the Lithium-Ion Battery
    Yoshino, Akira
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (24) : 5798 - 5800