Effect of Asymmetric Accumulative Roll-Bonding process on the Microstructure and Strength Evolution of the AA1050/AZ31/AA1050 Multilayered Composite Materials

被引:18
作者
Mroz, Sebastian [1 ]
Wierzba, Arkadiusz [2 ]
Stefanik, Andrzej [1 ]
Szota, Piotr [1 ]
机构
[1] Czestochowa Tech Univ, Fac Prod Engn & Mat Technol, Av Armii Krajowej 19, PL-42201 Czestochowa, Poland
[2] Metalurgia SA, Swietej Rozalii 10-12, PL-97500 Radomsko, Poland
关键词
magnesium alloy; aluminum; multilayered materials; asymmetric accumulative roll-bonding (AARB); microstructure; strength; FEM analysis;
D O I
10.3390/ma13235401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper aimed to propose the fabrication of light, Al/Mg/Al multilayered composite. Initially prepared three-layered feedstock was subjected to deformation during four rolling cycles (passes) using the conventional and modified accumulative roll bonding (ARB) processes at 400 degrees C, thanks to which 24-layered composite materials were produced. The modification of the ARB process was based on the application of the rotational speed asymmetry (asymmetric accumulative roll bonding, AARB). It was adopted that the initial thickness of the composite stack amounted to 3 mm (1 mm for each composite). The rolling was done in the laboratory duo D150 rolling mill with the application of the roll rotational speed asymmetry and symmetry a(v) = 1.0 (ARB) and a(v) = 1.25 and 1.5 (AARB). In this manuscript, it was proved that introducing the asymmetry into the ARB process for the tested Al/Mg/Al composite has an impact on the activation of additional shear bands, which results in higher fragmentation of the structure in comparison to the symmetrical process. Due to the application of the AARB, the reduction of the grain size by 17% was obtained, in comparison to the conventional ARB. Not to mention that at the same time there was an increase in strength of the fabricated multilayered composite.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条