Improving the Accuracy of the Fast Inverse Square Root by Modifying Newton-Raphson Corrections

被引:8
|
作者
Walczyk, Cezary J. [1 ]
Moroz, Leonid V. [2 ]
Cieslinski, Jan L. [1 ]
机构
[1] Uniwersytet Bialymstoku, Wydzial Fizyki, Ul Ciolkowskiego 1L, PL-15245 Bialystok, Poland
[2] Lviv Polytech Natl Univ, Dept Secur Informat & Technol, St Kn Romana 1-3, UA-79000 Lvov, Ukraine
关键词
approximation of functions; floating-point arithmetic; Newton– Raphson method; inverse square root; magic constant;
D O I
10.3390/e23010086
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Direct computation of functions using low-complexity algorithms can be applied both for hardware constraints and in systems where storage capacity is a challenge for processing a large volume of data. We present improved algorithms for fast calculation of the inverse square root function for single-precision and double-precision floating-point numbers. Higher precision is also discussed. Our approach consists in minimizing maximal errors by finding optimal magic constants and modifying the Newton-Raphson coefficients. The obtained algorithms are much more accurate than the original fast inverse square root algorithm and have similar very low computational costs.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [1] Table-Free Seed Generation for Hardware Newton-Raphson Square Root and Inverse Square Root Implementations in IoT Devices
    Parrilla, Luis
    Lloris, Antonio
    Castillo, Encarnacion
    Garcia, Antonio
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (09) : 6985 - 6995
  • [2] A scaling-less Newton-Raphson pipelined implementation for a fixed-point inverse square root operator
    Libessart, Erwan
    Arzel, Matthieu
    Lahuec, Cyril
    Andriulli, Francesco
    2017 IEEE 15TH INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2017, : 157 - 160
  • [3] OPTIMAL ABSOLUTE ERROR STARTING VALUES FOR NEWTON-RAPHSON CALCULATION OF SQUARE ROOT
    MONTUSCHI, P
    MEZZALAMA, M
    COMPUTING, 1991, 46 (01) : 67 - 86
  • [4] Decimal floating-point square root using Newton-Raphson iteration
    Wang, LK
    Schulte, MJ
    16TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURE AND PROCESSORS, PROCEEDINGS, 2005, : 309 - 315
  • [5] Optimal absolute error starting values for Newton-Raphson calculation of square root
    Montuschi, P.
    Mezzalama, M.
    Computing (Vienna/New York), 1991, 46 (01): : 87 - 91
  • [6] A Fast Newton-Raphson Method in stochastic linearization
    Canor, Thomas
    Blaise, Nicolas
    Denoel, Vincent
    EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, 2014, : 2839 - 2844
  • [7] An iterative Newton-Raphson method to solve the inverse admittivity problem
    Edic, PM
    Isaacson, D
    Saulnier, GJ
    Jain, H
    Newell, JC
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (07) : 899 - 908
  • [8] NEWTON-RAPHSON METHOD FOR ACCURACY ENHANCEMENT OF ELECTROOPTICAL TARGETING SYSTEM
    LU, ST
    CHOU, C
    WU, YP
    KING, HJ
    IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 1994, 141 (03) : 160 - 164
  • [9] NUMERICAL COMPUTATION OF ROOT LOCI USING NEWTON-RAPHSON TECHNIQUE
    ASH, RH
    ASH, GR
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (05) : 576 - +
  • [10] Correctness proofs outline for Newton-Raphson based floating-point divide and square root algorithms
    Cornea-Hasegan, MA
    Golliver, RA
    Markstein, P
    14TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 1999, : 96 - 105