Semi-supervised Image Classification Learning Based on Random Feature Subspace

被引:0
作者
Liu Li [1 ,2 ]
Zhang Huaxiang [1 ,2 ]
Hu Xiaojun [1 ,2 ]
Sun Feifei [1 ,2 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
[2] Shandong Prov Key Lab Novel Distributed Comp Soft, Jinan 250014, Peoples R China
来源
PATTERN RECOGNITION (CCPR 2014), PT I | 2014年 / 483卷
关键词
semi-supervised learning; feature extraction; random subspace; tri-training;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image classification is a well-known classical problem in multimedia content analysis. In this paper a framework of semi-supervised image classification method is presented based on random feature subspace. Firstly, color spatial distribution entropy is introduced to represent the color spatial information, and texture feature are extracted by using Gabor filter. Then random subspaces of the feature vector are dynamically generated from mixed feature vector as different views. Finally, three classifiers are trained by the classified images and tri-training algorithm is applied to classify sample images. Experimental results strongly demonstrate the effectiveness and robustness of the proposed system.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 50 条
  • [41] Unified active and semi-supervised learning for hyperspectral image classification
    Zengmao Wang
    Bo Du
    GeoInformatica, 2023, 27 : 23 - 38
  • [42] Semi-supervised dictionary learning with label propagation for image classification
    Chen L.
    Yang M.
    Computational Visual Media, 2017, 3 (1) : 83 - 94
  • [43] Semi-supervised hybrid contrastive learning for PolSAR image classification
    Hua, Wenqiang
    Sun, Nan
    Liu, Lin
    Ding, Chen
    Dong, Yizhuo
    Sun, Wei
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [44] Feature ranking for semi-supervised learning
    Matej Petković
    Sašo Džeroski
    Dragi Kocev
    Machine Learning, 2023, 112 : 4379 - 4408
  • [45] Collaborative Learning with Unreliability Adaptation for Semi-Supervised Image Classification
    Huo, Xiaoyang
    Zeng, Xiangping
    Wu, Si
    Shen, Wenjun
    Wong, Hau-San
    PATTERN RECOGNITION, 2023, 133
  • [46] A novel semi-supervised learning framework for hyperspectral image classification
    Ye, Zhijing
    Li, Hong
    Song, Yalong
    Wang, Jianzhong
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (02)
  • [47] Feature ranking for semi-supervised learning
    Petkovic, Matej
    Dzeroski, Saso
    Kocev, Dragi
    MACHINE LEARNING, 2023, 112 (11) : 4379 - 4408
  • [48] Semi-supervised Classification of Emotional Pictures Based on Feature Combination
    Li, Shuo
    Zhang, Yu-Jin
    MULTIMEDIA ON MOBILE DEVICES 2011 AND MULTIMEDIA CONTENT ACCESS: ALGORITHMS AND SYSTEMS V, 2011, 7881
  • [49] Ensemble-Based Feature Ranking for Semi-supervised Classification
    Petkovic, Matej
    Dzeroski, Saso
    Kocev, Dragi
    DISCOVERY SCIENCE (DS 2019), 2019, 11828 : 290 - 305
  • [50] Feature similarity learning based on fuzziness minimization for semi-supervised medical image segmentation
    Zhang, Tianlun
    Zhou, Xinlei
    Wang, Debby D.
    Wang, Xizhao
    INFORMATION FUSION, 2024, 106