Meshfree simulations of acoustic problems by a radial point interpolation method

被引:14
作者
You, Xiangyu [1 ,2 ,3 ]
Gui, Qiang [1 ,2 ,3 ]
Zhang, Qifan [1 ,2 ,3 ]
Chai, Yingbin [1 ,2 ,3 ]
Li, Wei [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China
[2] Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Shanghai 200240, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Naval Architecture & Ocean Engn Hyd, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Meshfree simulation; Modified radial point interpolation method; Pollution error effect; Acoustic problems; FINITE-ELEMENT-METHOD; HIGH WAVE-NUMBER; BOUNDARY-ELEMENT; HELMHOLTZ-EQUATION; DISPERSION ANALYSIS; NUMERICAL-SOLUTION; SOUND-SCATTERING; OPTIMIZATION; POLLUTION; CYLINDERS;
D O I
10.1016/j.oceaneng.2020.108202
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The classical finite element approach cannot guarantee satisfactory accuracy for acoustic problems at large wavenumbers on account of the numerical pollution error effect. This negative effect stems from the fact that the approximate wavenumbers are usually in conflict with the real wavenumbers in many numerical methods. To suppress this effect, a radial point interpolation meshless technique with a modified scheme for selecting interpolation nodes is employed in this paper. One-dimensional dispersion analysis shows that this modified scheme can effectively reduce numerical errors compared with the original scheme. The results of several numerical examples have manifested that the present method can generate more accurate and reliable solutions than the standard finite element approach and the original radial point interpolation method in the acoustic analyses.
引用
收藏
页数:23
相关论文
共 50 条
[41]   Using the finite element method and radial point interpolation method to analyze the jaw bone [J].
Moutinho, M. B. F. ;
Belinha, J. ;
Natal Jorge, R. M. .
2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG), 2019,
[42]   Analysis of Transient Thermo-Elastic Problems Using a Cell-Based Smoothed Radial Point Interpolation Method [J].
Wu, Gang ;
Zhang, Jian ;
Li, Yuelin ;
Yin, Lairong ;
Liu, Zhiqiang .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2016, 13 (05)
[43]   A meshfree method for elasticity problems with interfaces [J].
Martins, Nuno F. M. ;
Rebelo, Magda .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) :10732-10745
[44]   Radial integration boundary element method for acoustic eigenvalue problems [J].
Qu, Shen ;
Li, Sheng ;
Chen, Hao-Ran ;
Qu, Zhan .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (7-8) :1043-1051
[45]   Crack path prediction using the natural neighbour radial point interpolation method [J].
Azevedo, J. M. C. ;
Belinha, J. ;
Dinis, L. M. J. S. ;
Natal Jorge, R. M. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 59 :144-158
[46]   On the Factors Affecting the Accuracy and Robustness of Smoothed-Radial Point Interpolation Method [J].
Hamrani, Abderrachid ;
Belaidi, Idir ;
Monteiro, Eric ;
Lorong, Philippe .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (01) :43-72
[47]   The Natural Neighbor Radial Point Interpolation Method Extended to the Crack Growth Simulation [J].
Belinha, J. ;
Azevedo, J. M. C. ;
Dinis, L. M. J. S. ;
Jorge, R. M. Natal .
INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2016, 8 (01)
[49]   A centroid-enriched strain-smoothed radial point interpolation method for nearly incompressible elastoplastic problems in solid mechanics [J].
Zhou, Xi -Wen ;
Jin, Yin -Fu ;
Yin, Zhen-Yu ;
Liu, Feng-Tao .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 155 :888-906
[50]   A Meshfree Quasi-Interpolation Method for Solving Burgers' Equation [J].
Li, Mingzhu ;
Chen, Lijuan ;
Ma, Qiang .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014