Meshfree simulations of acoustic problems by a radial point interpolation method

被引:14
作者
You, Xiangyu [1 ,2 ,3 ]
Gui, Qiang [1 ,2 ,3 ]
Zhang, Qifan [1 ,2 ,3 ]
Chai, Yingbin [1 ,2 ,3 ]
Li, Wei [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China
[2] Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Shanghai 200240, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Naval Architecture & Ocean Engn Hyd, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Meshfree simulation; Modified radial point interpolation method; Pollution error effect; Acoustic problems; FINITE-ELEMENT-METHOD; HIGH WAVE-NUMBER; BOUNDARY-ELEMENT; HELMHOLTZ-EQUATION; DISPERSION ANALYSIS; NUMERICAL-SOLUTION; SOUND-SCATTERING; OPTIMIZATION; POLLUTION; CYLINDERS;
D O I
10.1016/j.oceaneng.2020.108202
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The classical finite element approach cannot guarantee satisfactory accuracy for acoustic problems at large wavenumbers on account of the numerical pollution error effect. This negative effect stems from the fact that the approximate wavenumbers are usually in conflict with the real wavenumbers in many numerical methods. To suppress this effect, a radial point interpolation meshless technique with a modified scheme for selecting interpolation nodes is employed in this paper. One-dimensional dispersion analysis shows that this modified scheme can effectively reduce numerical errors compared with the original scheme. The results of several numerical examples have manifested that the present method can generate more accurate and reliable solutions than the standard finite element approach and the original radial point interpolation method in the acoustic analyses.
引用
收藏
页数:23
相关论文
共 50 条
[31]   Coupled FEM and meshless radial point interpolation method [J].
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China ;
不详 .
Qinghua Daxue Xuebao, 2008, 6 (951-954) :951-954
[32]   Fracture propagation using the radial point interpolation method [J].
Ramalho, Luis D. C. ;
Belinha, Jorge ;
Campilho, Raul D. S. G. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2020, 43 (01) :77-91
[33]   A hybrid smoothed moving least-squares interpolation method for acoustic scattering problems [J].
Wu, Shaowei ;
Xiang, Yang ;
Li, Wanyou .
ENGINEERING WITH COMPUTERS, 2023, 39 (05) :3651-3669
[34]   Radial interpolation finite element method for two dimension acoustic numerical computation [J].
Xia, Baizhan ;
Yu, Dejie ;
Yao, Lingyun .
Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2012, 48 (11) :159-165
[35]   Numerical investigations of edge-based smoothed radial point interpolation method for transient wave propagations [J].
You, Xiangyu ;
Li, Wei ;
Chai, Yingbin ;
Yao, Yu .
OCEAN ENGINEERING, 2022, 266
[36]   A coupled finite element-meshfree smoothed point interpolation method for nonlinear analysis [J].
Saliba, Samir Silva ;
Gori, Lapo ;
Pitangueira, Roque Luiz da Silva .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 128 :1-18
[37]   A boundary point interpolation method for acoustic problems with particular emphasis on the calculation of Cauchy principal value integrals [J].
Chen, Linchong ;
Li, Xiaolin .
COMPUTERS & STRUCTURES, 2024, 297
[38]   The Nonconforming Point Interpolation Method Applied to Electromagnetic Problems [J].
Lima, Naisses Z. ;
Mesquita, Renato C. ;
Facco, Werley G. ;
Moura, Alex S. ;
Silva, Elson J. .
IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) :619-622
[39]   On the analysis of a kind of nonlinear Sobolev equation through locally applied pseudo-spectral meshfree radial point interpolation [J].
Abbasbandy, Saeid ;
Shivanian, Elyas ;
AL-Jizani, Khalid Hammood .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) :462-478
[40]   The local radial point interpolation meshless method for solving Maxwell equations [J].
Dehghan, Mehdi ;
Haghjoo-Saniji, Mina .
ENGINEERING WITH COMPUTERS, 2017, 33 (04) :897-918