Meshfree simulations of acoustic problems by a radial point interpolation method

被引:14
作者
You, Xiangyu [1 ,2 ,3 ]
Gui, Qiang [1 ,2 ,3 ]
Zhang, Qifan [1 ,2 ,3 ]
Chai, Yingbin [1 ,2 ,3 ]
Li, Wei [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China
[2] Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Shanghai 200240, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Naval Architecture & Ocean Engn Hyd, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Meshfree simulation; Modified radial point interpolation method; Pollution error effect; Acoustic problems; FINITE-ELEMENT-METHOD; HIGH WAVE-NUMBER; BOUNDARY-ELEMENT; HELMHOLTZ-EQUATION; DISPERSION ANALYSIS; NUMERICAL-SOLUTION; SOUND-SCATTERING; OPTIMIZATION; POLLUTION; CYLINDERS;
D O I
10.1016/j.oceaneng.2020.108202
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The classical finite element approach cannot guarantee satisfactory accuracy for acoustic problems at large wavenumbers on account of the numerical pollution error effect. This negative effect stems from the fact that the approximate wavenumbers are usually in conflict with the real wavenumbers in many numerical methods. To suppress this effect, a radial point interpolation meshless technique with a modified scheme for selecting interpolation nodes is employed in this paper. One-dimensional dispersion analysis shows that this modified scheme can effectively reduce numerical errors compared with the original scheme. The results of several numerical examples have manifested that the present method can generate more accurate and reliable solutions than the standard finite element approach and the original radial point interpolation method in the acoustic analyses.
引用
收藏
页数:23
相关论文
共 50 条
[21]   Dispersion Error Reduction for Acoustic Problems Using the Finite Element-Least Square Point Interpolation Method [J].
Yao, L. Y. ;
Zhou, J. W. ;
Zhou, Z. ;
Li, L. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2015, 137 (02)
[22]   Analysis of acoustic radiation problems using the cell-based smoothed radial point interpolation method with Dirichlet-to-Neumann boundary condition [J].
Xu, Youyun ;
Zhang, Guiyong ;
Zhou, Bo ;
Wang, Haiying ;
Tang, Qian .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 108 :447-458
[23]   A Novel "Finite Element-Meshfree" Triangular Element Based on Partition of Unity for Acoustic Propagation Problems [J].
Dang, Sina ;
Wang, Gang ;
Chai, Yingbin .
MATHEMATICS, 2023, 11 (11)
[24]   A radial interpolation finite element method for 2D homogeneous and multifluid coupling acoustic problems [J].
Xia, Baizhan ;
Yu, Dejie ;
Liu, Jian ;
Liu, Yantao .
NOISE CONTROL ENGINEERING JOURNAL, 2013, 61 (03) :330-344
[25]   A hybrid finite element-least square point interpolation method for solving acoustic problems [J].
Yao, L. Y. ;
Yu, D. J. ;
Cui, W. Y. ;
Zhou, J. W. .
NOISE CONTROL ENGINEERING JOURNAL, 2012, 60 (01) :97-112
[27]   A scaled boundary radial point interpolation method for 2-D elasticity problems [J].
Hajiazizi, Mohammad ;
Graili, Adel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (07) :832-851
[28]   A singular cell-based smoothed radial point interpolation method for fracture problems [J].
Liu, G. R. ;
Jiang, Y. ;
Chen, L. ;
Zhang, G. Y. ;
Zhang, Y. W. .
COMPUTERS & STRUCTURES, 2011, 89 (13-14) :1378-1396
[29]   Local radial point interpolation method for the fully developed magnetohydrodynamic flow [J].
Cai, Xinghui ;
Su, G. H. ;
Qiu, Suizheng .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4529-4539
[30]   A hybrid finite element-least-square point interpolation method for solving multifluid coupling acoustic problems [J].
Yao, Lingyun ;
Wu, Fei .
NOISE CONTROL ENGINEERING JOURNAL, 2017, 65 (03) :234-243