Classical Yang-Baxter equation and left invariant affine geometry on Lie groups

被引:45
作者
Diatta, A
Medina, A
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Montpellier 2, Dept Math, CNRS, UMR 5030, F-34095 Montpellier 5, France
关键词
D O I
10.1007/s00229-004-0475-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Lie group, T*G=Lie(G)*xG its cotangent bundle considered as a Lie group, where G acts on Lie(G)* via the coadjoint action. Each solution r of the Classical Yang Baxter Equation on G, corresponds to a connected Lie subgroup H of T*G such that Lie(H) is a Lagrangian graph in Lie(G)+Lie(G)* and H carries a left invariant affine structure. If r is invertible, the Poisson Lie tensor pi given by r on G is polynomial of degree at most 2 and every double Lie group of (G,pi) is endowed with an affine and a complex structures del and J, both left invariant and given by r, such that delJ=0.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 21 条
[11]   ON LIE-GROUPS WITH LEFT-INVARIANT SYMPLECTIC OR KAHLERIAN STRUCTURES [J].
LICHNEROWICZ, A ;
MEDINA, A .
LETTERS IN MATHEMATICAL PHYSICS, 1988, 16 (03) :225-235
[12]  
LICHNEROWICZ A, 1991, PROG MATH, V99, P245
[13]  
Lichnerowicz A., 1977, J DIFFER GEOM, V12, P253, DOI [DOI 10.4310/JDG/1214433987, 10.4310/jdg/1214433987]
[14]  
LU JH, 1990, J DIFFER GEOM, V31, P501
[15]  
MEDINA A, 1991, MATH SCI R, V20, P247
[16]   FUNDAMENTAL GROUPS OF COMPLETE AFFINELY FLAT MANIFOLDS [J].
MILNOR, J .
ADVANCES IN MATHEMATICS, 1977, 25 (02) :178-187
[17]  
Nijenhuis A., 1968, L'Enseignement Mathem., VXIV, P225
[18]  
PEREA AM, 1981, J DIFFER GEOM, V16, P445
[19]  
SEMENOVTYANSHANSKII MA, 1983, FUNCT ANAL APPL+, V17, P259
[20]  
VINBERG EB, 1961, DOKL AKAD NAUK SSSR+, V141, P521