Classical Yang-Baxter equation and left invariant affine geometry on Lie groups

被引:45
作者
Diatta, A
Medina, A
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Montpellier 2, Dept Math, CNRS, UMR 5030, F-34095 Montpellier 5, France
关键词
D O I
10.1007/s00229-004-0475-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Lie group, T*G=Lie(G)*xG its cotangent bundle considered as a Lie group, where G acts on Lie(G)* via the coadjoint action. Each solution r of the Classical Yang Baxter Equation on G, corresponds to a connected Lie subgroup H of T*G such that Lie(H) is a Lagrangian graph in Lie(G)+Lie(G)* and H carries a left invariant affine structure. If r is invertible, the Poisson Lie tensor pi given by r on G is polynomial of degree at most 2 and every double Lie group of (G,pi) is endowed with an affine and a complex structures del and J, both left invariant and given by r, such that delJ=0.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 21 条
[1]   GENERALIZED LAX PAIRS, THE MODIFIED CLASSICAL YANG-BAXTER EQUATION, AND AFFINE GEOMETRY OF LIE-GROUPS [J].
BORDEMANN, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :201-216
[2]  
CHU BY, 1974, T AM MATH SOC, V197, P145
[3]   Kahlerian Lie algebras and double extension [J].
Dardie, JM ;
Medina, A .
JOURNAL OF ALGEBRA, 1996, 185 (03) :774-795
[4]   Double extension symplectique d'un groupe de Lie symplectique [J].
Dardie, JM ;
Medina, A .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :208-227
[5]  
DIATTA A, 2000, THESIS U MONTPELLIER
[6]  
Drinfeld V., 1983, Soviet Math. Dokl., V27, P68
[7]   AFFINE MANIFOLDS AND SOLVABLE-GROUPS [J].
FRIED, D ;
GOLDMAN, W ;
HIRSCH, MW .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 3 (03) :1045-1047
[8]  
Helmstetter J., 1979, ANN I FOURIER GRENOB, V29, P17, DOI [10.5802/aif.764, DOI 10.5802/AIF.764]
[9]  
Koszul J-L., 1961, B SOC MATH FRANCE, V89, P515, DOI [10.24033/bsmf.1572, DOI 10.24033/BSMF.1572]
[10]  
Koszul JL., 1955, CAN J MATH, V7, P562, DOI 10.4153/CJM-1955-061-3