Control of Strain Hardening Behavior in High-Mn Austenitic Steels

被引:72
作者
Song, Wenwen [1 ]
Ingendahl, Tobias [1 ]
Bleck, Wolfgang [1 ]
机构
[1] Rhein Westfal TH Aachen, Steel Inst, D-52072 Aachen, Germany
关键词
High-Mn austenitic steels; Stacking fault energy; Strain hardening; INDUCED PLASTICITY STEELS; MECHANICAL-PROPERTIES; C STEEL; DEFORMATION; MICROSTRUCTURE; DISLOCATION; TEMPERATURE; DEPENDENCE; ELEMENTS; ENERGY;
D O I
10.1007/s40195-014-0084-9
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Austenitic high-Mn steels with Mn contents between approximately 15 and 30 wt% gain much interest because of their excellent mechanical properties and the option for adjusting strain hardening behavior due to different deformation mechanisms. 2D and 3D composition-dependent stacking fault energy (SFE) maps indicate the effect of chemical composition and temperature on SFE and consequently on the deformation mechanisms. Three steels with different chemical compositions and the same or different SilE are characterized in quasi-static tensile tests. The control parameters of strain hardening behavior in the high-Mn austenitic steels are described, and consequences for future developments are discussed.
引用
收藏
页码:546 / 556
页数:11
相关论文
共 31 条
[1]   STRAIN-HARDENING OF HADFIELD MANGANESE STEEL [J].
ADLER, PH ;
OLSON, GB ;
OWEN, WS .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1986, 17 (10) :1725-1737
[2]   Modeling of mechanical twinning in a high manganese content austenitic steel [J].
Allain, S ;
Chateau, JP ;
Dahmoun, D ;
Bouaziz, O .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :272-276
[3]   A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J].
Allain, S ;
Chateau, JP ;
Bouaziz, O .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :143-147
[4]   Effect of temperature and strain rate on strain hardening and deformation mechanisms of high manganese austenitic steels [J].
Baeumer, Annette ;
Antonio Jimenez, Jose ;
Bleck, Wolfgang .
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2010, 101 (06) :705-714
[5]   Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions [J].
Barbier, D. ;
Gey, N. ;
Allain, S. ;
Bozzolo, N. ;
Humbert, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 500 (1-2) :196-206
[6]   Deformation and fracture behaviour of high manganese austenitic steel [J].
Bayraktar, E ;
Khalid, FA ;
Levaillant, C .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 147 (02) :145-154
[7]   High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J].
Bouaziz, O. ;
Allain, S. ;
Scott, C. P. ;
Cugy, P. ;
Barbier, D. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2011, 15 (04) :141-168
[8]   Direct observation of the twinning mechanism in an austenitic Fe-Mn-C steel [J].
Bracke, L. ;
Kestens, L. ;
Penning, J. .
SCRIPTA MATERIALIA, 2009, 61 (02) :220-222
[9]   On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J].
Byun, TS .
ACTA MATERIALIA, 2003, 51 (11) :3063-3071
[10]   Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J].
Choi, Kayoung ;
See, Chang-Hyo ;
Lee, Hakcheol ;
Kim, S. K. ;
Kwak, Jai Hyun ;
Chin, Kwang Geun ;
Parkd, Kyung-Tae ;
Kim, Nack J. .
SCRIPTA MATERIALIA, 2010, 63 (10) :1028-1031