Theory of resistor networks: the two-point resistance

被引:252
作者
Wu, FY [1 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 26期
关键词
D O I
10.1088/0305-4470/37/26/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The resistance between two arbitrary nodes in a resistor network is obtained in terms of the eigenvalues and eigenfunctions of the Laplacian matrix associated with the network. Explicit formulae for two-point resistances are deduced for regular lattices in one, two and three dimensions under various boundary conditions including that of a Mobius strip and a Klein bottle. The emphasis is on lattices of finite sizes. We also deduce summation and product identities which can be used to analyse large-size expansions in two and higher dimensions.
引用
收藏
页码:6653 / 6673
页数:21
相关论文
共 11 条
[1]   Application of the lattice Green's function for calculating the resistance of an infinite network of resistors [J].
Cserti, J .
AMERICAN JOURNAL OF PHYSICS, 2000, 68 (10) :896-906
[2]   Perturbation of infinite networks of resistors [J].
Cserti, J ;
Dávid, G ;
Piróth, A .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (02) :153-159
[3]  
Doyle P.G., 1984, CARUS MATH MONOGRAPH, V22, P83
[4]  
GRASHTEYN IS, 1965, TABLE INTEGRALS SUMM
[5]  
Harary F., 1969, GRAPH THEORY
[6]   LATTICE GREENS FUNCTION - INTRODUCTION [J].
KATSURA, S ;
MORITA, T ;
INAWASHIRO, S ;
HORIGUCHI, T ;
ABE, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (05) :892-+
[7]  
Kirchhoff G., 1847, Ann. Phys. Chem, V72, P497, DOI [10.1002/andp.18471481202, DOI 10.1002/ANDP.18471481202]
[8]  
Lovasz L, 1996, BOLYAI MATH STUD, V2, P353
[9]  
Redner S, 2001, GUIDE 1 PASSAGE PROC
[10]   Spanning trees on hypercubic lattices and nonorientable surfaces [J].
Tzeng, WJ ;
Wu, FY .
APPLIED MATHEMATICS LETTERS, 2000, 13 (07) :19-25