Heat Transfer Due to an Impinging Jet in a Confined Space

被引:10
|
作者
Nasif, G. [1 ]
Barron, R. M. [1 ]
Balachandar, R. [1 ]
机构
[1] Univ Windsor, Dept Mech Automot & Mat Engn, Windsor, ON N9B 3P4, Canada
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2014年 / 136卷 / 11期
关键词
jet impingement; VOF; stagnation zone; velocity gradient; Nusselt number; FREE-CONVECTION; LIQUID JETS; IMPINGEMENT; SURFACE; CONDUCTION; ZONE;
D O I
10.1115/1.4028242
中图分类号
O414.1 [热力学];
学科分类号
摘要
A numerical investigation using unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations with the k-omega SST (shear stress transport) turbulent model was conducted to determine the flow and thermal characteristics of an unsubmerged axisym-metric oil jet in air, impinging normally on to a heated flat disk with finite radius, bounded by cylindrical walls kept at constant temperature. A 10 mm thick disk subjected to a high uniform heat flux was located at impingement distances ranging from 40 to 80 mm from the nozzle exit, for nozzle exit diameters of d - 1.0, 2.0, and 4.0 mm. The volume of fluid (VOF) method with a high-resolution interface-capturing (HRIC) scheme was implemented in STAR-CCM+. A new methodology was developed to predict the stagnation zone and local heat transfer coefficients. Contrary to previous research, it is shown that the radial extent of the stagnation zone is not fixed but depends on the gradient of radial velocity along the disk. The normalized local Nusselt number profile along the disk radius is found to be weakly dependent on Reynolds number for a given nozzle size. It is also shown that the local Nusselt number is not uniform in the stagnation region as reported by experimental studies but depends on the distribution of the near-wall radial velocity gradient. Using the computational results, new correlations to predict the dimensionless radial velocity gradient and Nusselt number have been developed. The present correlations are dimensionally balanced, eliminating a deficiency in earlier correlations noted in the literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Heat transfer of a circular impinging jet on a circular cylinder in crossflow
    Wang, X. L.
    Motala, D.
    Lu, T. J.
    Song, S. J.
    Kim, T.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 78 : 1 - 8
  • [22] Effect of Narrow Jet Spacing on Impinging Flow and Heat Transfer
    Guo, L.
    Yan, Y. Y.
    Zu, Y. Q.
    PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 5, PTS A AND B, 2012, : 1411 - 1419
  • [23] Heat Transfer Characteristics of an Impinging Jet in Crossflow
    Wang, Lei
    Sunden, Bengt
    Borg, Andreas
    Abrahamsson, Hans
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2011, 133 (12):
  • [24] Flow and heat transfer of a compressible impinging jet
    Fenot, M.
    Trinh, X. T.
    Dorignac, E.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 136 : 357 - 369
  • [25] IMPINGING OIL JET BEHAVIOUR FOR PLANAR WALL HEAT TRANSFER
    El-Khawankey, Sarah
    Al-Sibai, Faruk
    Kneer, Reinhold
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 5: FUEL CELLS, GAS TURBINES, HEAT PIPES, JET IMPINGEMENT, RADIATION, 2010, : 639 - 645
  • [26] HEAT TRANSFER ANALYSIS OF AN IMPINGING SLOT JET ON A CONCAVE SURFACE
    Poitras, G. J.
    Babineau, A.
    Roy, G.
    Brizzi, L. -E.
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [27] Analysis of heat transfer and flow characteristics in turbulent impinging jet
    Draksler, Martin
    Koncar, Bostjan
    NUCLEAR ENGINEERING AND DESIGN, 2011, 241 (04) : 1248 - 1254
  • [28] Conjugate Heat Transfer Study of Turbulent Slot Impinging Jet
    Achari, A. Madhusudana
    Das, Manab Kumar
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2015, 7 (04)
  • [29] A note on unsteady impinging jet heat transfer
    Bhattacharya, S.
    Ahmed, A.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (05) : 633 - 637
  • [30] Flow and heat transfer characteristics of an impinging jet augmented with swirl
    V. Chandra, Premchand
    Panda, Pratikash P.
    Dutta, Pradip
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 149