Systems Genetics Identifies a Novel Regulatory Domain of Amylose Synthesis

被引:64
作者
Butardo, Vito M., Jr. [1 ]
Anacleto, Roslen [1 ]
Parween, Sabiha [1 ]
Samson, Irene [1 ]
de Guzman, Krishna [1 ]
Mae Alhambra, Crisline [1 ]
Misra, Gopal [1 ]
Sreenivasulu, Nese [1 ]
机构
[1] Int Rice Res Inst, Div Plant Breeding, Grain Qual & Nutr Ctr, Los Banos, Laguna, Philippines
关键词
BOUND-STARCH-SYNTHASE; WAXY GENE; IN-VITRO; AMYLOPECTIN STRUCTURE; GLYCEMIC INDEX; RICE; EXPRESSION; GRANULE; METABOLISM; DOMESTICATION;
D O I
10.1104/pp.16.01248
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS) of debranched starch structure from grains of a 320 indica rice diversity panel using genotyping data from the high-density rice array. A systems genetics approach that interrelates starch structure data from GWAS to functional pathways from a gene regulatory network identified known genes with high correlation to the proportion of amylose and amylopectin. An SNP in the promoter region of Granule Bound Starch Synthase I was identified along with seven other SNPs to form haplotypes that discriminate samples into different phenotypic ranges of amylose. A GWAS peak on chromosome 7 between LOC_Os07g11020 and LOC_Os07g11520 indexed by a nonsynonymous SNP mutation on exon 5 of a bHLH transcription factor was found to elevate the proportion of amylose at the expense of reduced short-chain amylopectin. Linking starch structure with starch digestibility by determining the kinetics of cooked grain amylolysis of selected haplotypes revealed strong association of starch structure with estimated digestibility kinetics. Combining all results from grain quality genomics, systems genetics, and digestibility phenotyping, we propose target haplotypes for fine-tuning starch structure in rice through marker-assisted breeding that can be used to alter the digestibility of rice grain, thus offering rice consumers a new diet-based intervention to mitigate the impact of nutrition-related noncommunicable diseases.
引用
收藏
页码:887 / 906
页数:20
相关论文
共 110 条
[1]   Prospects of breeding high-quality rice using post-genomic tools [J].
Anacleto, Roslen ;
Cuevas, Rosa Paula ;
Jimenez, Rosario ;
Llorente, Cindy ;
Nissila, Eero ;
Henry, Robert ;
Sreenivasulu, Nese .
THEORETICAL AND APPLIED GENETICS, 2015, 128 (08) :1449-1466
[2]  
[Anonymous], WORKSH CHEM ASP RIC
[3]   Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm [J].
Ayres, NM ;
McClung, AM ;
Larkin, PD ;
Bligh, HFJ ;
Jones, CA ;
Park, WD .
THEORETICAL AND APPLIED GENETICS, 1997, 94 (6-7) :773-781
[4]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[5]   Progress in understanding the biosynthesis of amylose [J].
Ball, SG ;
van de Wal, MHBJ ;
Visser, RGF .
TRENDS IN PLANT SCIENCE, 1998, 3 (12) :462-467
[6]   Haploview: analysis and visualization of LD and haplotype maps [J].
Barrett, JC ;
Fry, B ;
Maller, J ;
Daly, MJ .
BIOINFORMATICS, 2005, 21 (02) :263-265
[7]   A Systems Genetics Approach Identifies Gene Regulatory Networks Associated with Fatty Acid Composition in Brassica rapa Seed [J].
Basnet, Ram Kumar ;
Del Carpio, Dunia Pino ;
Xiao, Dong ;
Bucher, Johan ;
Jin, Mina ;
Boyle, Kerry ;
Fobert, Pierre ;
Visser, Richard G. F. ;
Maliepaard, Chris ;
Bonnema, Guusje .
PLANT PHYSIOLOGY, 2016, 170 (01) :568-585
[8]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[9]  
Bertoft E., 2015, Starch: Metabolism and structure, P3, DOI [DOI 10.1007/978-4-431-55495-0_1, 10.1007/978-4-431-55495-01, DOI 10.1007/978-4-431-55495-01]
[10]   Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties [J].
Bligh, HFJ ;
Larkin, PD ;
Roach, PS ;
Jones, CA ;
Fu, HY ;
Park, WD .
PLANT MOLECULAR BIOLOGY, 1998, 38 (03) :407-415