INVARIANT DISTRIBUTIONS AND X-RAY TRANSFORM FOR ANOSOV FLOWS

被引:0
作者
Guillarmou, Colin [1 ]
机构
[1] Ecole Normale Super, CNRS, UMR 8553, 45 Rue Ulm, F-75230 Paris 05, France
关键词
TENSOR TOMOGRAPHY; RIEMANNIAN-MANIFOLDS; MICROLOCAL ANALYSIS; SPECTRAL RIGIDITY; REGULARITY; DIFFEOMORPHISMS; SURFACES; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For Anosov flows preserving a smooth measure on a closed manifold M, we define a natural self-adjoint operator. which maps into the space of flow invariant distributions in n boolean AND H-r< 0(r) (M) and whose kernel is made of coboundaries in.boolean OR H-s> 0(s) (M). We describe relations to the Livsic theorem and recover regularity properties of cohomological equations using this operator. For Anosov geodesic flows on the unit tangent bundle M= SM of a compact manifold M, we apply this theory to study X-ray transform on symmetric tensors on M. In particular, we prove existence of flow invariant distributions on SM with prescribed push-forward on M and a similar version for tensors. This allows us to show injectivity of the X-ray transform on an Anosov surface: any divergence free symmetric tensor on M which integrates to 0 along all closed geodesics is zero.
引用
收藏
页码:177 / 208
页数:32
相关论文
共 36 条
  • [1] Patterson-sullivan distributions and quantum ergodicity
    Anantharaman, Nalini
    Zelditch, Steve
    [J]. ANNALES HENRI POINCARE, 2007, 8 (02): : 361 - 426
  • [2] [Anonymous], 1979, P S PURE MATH
  • [3] [Anonymous], ARXIV151105516
  • [4] [Anonymous], PROGR MATH
  • [5] [Anonymous], MATH THEORY SC UNPUB
  • [6] Anosov D. V., 1967, T MAT I STEKLOVA, V90
  • [7] Anisotropic Holder and Sobolev spaces for hyperbolic diffeomorphisms
    Baladi, Viviane
    Tsujii, Masato
    [J]. ANNALES DE L INSTITUT FOURIER, 2007, 57 (01) : 127 - 154
  • [8] Ruelle-Perron-Yrobenius spectrum for Anosov maps
    Blank, M
    Keller, G
    Liverani, C
    [J]. NONLINEARITY, 2002, 15 (06) : 1905 - 1973
  • [9] Burns K., 1994, ERG THEORY DYNAM SYS, V14, P757
  • [10] Smooth Anosov flows: Correlation spectra and stability
    Butterley, Oliver
    Liverani, Carlangelo
    [J]. JOURNAL OF MODERN DYNAMICS, 2007, 1 (02) : 301 - 322