Distance-regular graphs of q-Racah type and the universal Askey-Wilson algebra

被引:14
作者
Terwilliger, Paul [1 ]
Zitnik, Arjana [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[3] IMFM, Ljubljana 1000, Slovenia
关键词
Distance regular graph; Q-polynomial; Askey-Wilson relations; Leonard pair; Subconstituent algebra; SUBCONSTITUENT ALGEBRA;
D O I
10.1016/j.jcta.2014.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C denote the field of complex numbers, and fix a nonzero q is an element of C such that q(4) not equal 1. Define a C-algebra Delta(q) by generators and relations in the following way. The generators are A, B, C. The relations assert that each of A + qBC - q(-1)CB/q(2) - q(-2), B + qCA - q(-1)AC/q(2) - q(-2), C + qAB - q(-1)BA/q(2) - q(-2) is central in Delta(q). The algebra Delta(q) is called the universal Askey-Wilson algebra. Let Gamma denote a distance-regular graph that has q-Racah type. Fix a vertex x of Gamma and let T = T(x) denote the corresponding subconstituent algebra. In this paper we discuss a relationship between Delta(q) and T. Assuming that every irreducible T-module is thin, we display a surjective C-algebra homomorphism Delta(q) -> T. This gives a Delta(q) action on the standard module of T. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:98 / 112
页数:15
相关论文
共 20 条