Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation

被引:156
作者
Cui, Baihua [1 ,2 ,3 ]
Hu, Zheng [4 ]
Liu, Chang [3 ]
Liu, Siliang [3 ]
Chen, Fangshuai [3 ]
Hu, Shi [4 ]
Zhang, Jinfeng [3 ]
Zhou, Wei [4 ]
Deng, Yida [3 ]
Qin, Zhenbo [3 ]
Wu, Zhong [3 ]
Chen, Yanan [3 ]
Cui, Lifeng [1 ]
Hu, Wenbin [2 ,3 ]
机构
[1] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523808, Peoples R China
[2] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[3] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300372, Peoples R China
[4] Tianjin Univ, Sch Sci, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
lamellar edges; Fe-Ni(OH)(2)/Ni3S2 seawater oxidation; chlorine electrochemistry; electrocatalysis; OXYGEN EVOLUTION; ELECTROCATALYSTS; ALKALINE; NANOSHEETS; CATALYST; HYDROXIDE; ARRAYS; ANODE; LDH;
D O I
10.1007/s12274-020-3164-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of efficient non-precious catalysts for seawater electrolysis is of great significance but challenging due to the sluggish kinetics of oxygen evolution reaction (OER) and the impairment of chlorine electrochemistry at anode. Herein, we report a heterostructure of Ni3S2 nanoarray with secondary Fe-Ni(OH)(2) lamellar edges that exposes abundant active sites towards seawater oxidation. The resultant Fe-Ni(OH)(2)/Ni3S2 nanoarray works directly as a free-standing anodic electrode in alkaline artificial seawater. It only requires an overpotential of 269 mV to afford a current density of 10 mA center dot cm(-2) and the Tafel slope is as low as 46 mV center dot dec(-1). The 27-hour chronopotentiometry operated at high current density of 100 mA center dot cm(-2) shows negligible deterioration, suggesting good stability of the Fe center dot Ni(OH)(2)/Ni3S2@NF electrode. Faraday efficiency for oxygen evolution is up to similar to 95%, revealing decent selectivity of the catalyst in saline water. Such desirable catalytic performance could be benefitted from the introduction of Fe activator and the heterostructure that offers massive active and selective sites. The density functional theory (DFT) calculations indicate that the OER has lower theoretical overpotential than Cl-2 evolution reaction in Fe sites, which is contrary to that of Ni sites. The experimental and theoretical study provides a strong support for the rational design of high-performance Fe-based electrodes for industrial seawater electrolysis.
引用
收藏
页码:1149 / 1155
页数:7
相关论文
共 52 条
[11]   Surface-Guided Formation of Amorphous Mixed-Metal Oxyhydroxides on Ultrathin MnO2 Nanosheet Arrays for Efficient Electrocatalytic Oxygen Evolution [J].
Fang, Ming ;
Han, Dong ;
Xu, Wen-Bo ;
Shen, Yun ;
Lu, Youming ;
Cao, Peijiang ;
Han, Shun ;
Xu, Wangying ;
Zhu, Deliang ;
Liu, Wenjun ;
Ho, Johnny C. .
ADVANCED ENERGY MATERIALS, 2020, 10 (27)
[12]   FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction [J].
Feng, Jin-Xian ;
Xu, Han ;
Dong, Yu-Tao ;
Ye, Sheng-Hua ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (11) :3694-3698
[13]   High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting [J].
Feng, Liang-Liang ;
Yu, Guangtao ;
Wu, Yuanyuan ;
Li, Guo-Dong ;
Li, Hui ;
Sun, Yuanhui ;
Asefa, Tewodros ;
Chen, Wei ;
Zou, Xiaoxin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) :14023-14026
[14]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313
[15]   IrMo Nanocatalysts for Efficient Alkaline Hydrogen Electrocatalysis [J].
Fu, Luhong ;
Li, Yunbo ;
Yao, Na ;
Yang, Fulin ;
Cheng, Gongzhen ;
Luo, Wei .
ACS CATALYSIS, 2020, 10 (13) :7322-7327
[16]   Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH [J].
Goerlin, Mikaela ;
de Araujo, Jorge Ferreira ;
Schmies, Henrike ;
Bernsmeier, Denis ;
Dresp, Soeren ;
Gliech, Manuel ;
Jusys, Zenonas ;
Chernev, Petko ;
Kraehnert, Ralph ;
Dau, Holger ;
Strasser, Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (05) :2070-2082
[17]   A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts [J].
Gong, Ming ;
Dai, Hongjie .
NANO RESEARCH, 2015, 8 (01) :23-39
[18]   Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst [J].
Hao, Chongyan ;
Wu, Yang ;
An, Yajing ;
Cui, Baihua ;
Lin, Jiannan ;
Li, Xiaoning ;
Wang, Dianhui ;
Jiang, Minhong ;
Cheng, Zhenxiang ;
Hu, Shi .
MATERIALS TODAY ENERGY, 2019, 12 :453-462
[19]   An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency [J].
Hsu, Shao-Hui ;
Miao, Jianwei ;
Zhang, Liping ;
Gao, Jiajian ;
Wang, Hongming ;
Tao, Huabing ;
Hung, Sung-Fu ;
Vasileff, Anthony ;
Qiao, Shi Zhang ;
Liu, Bin .
ADVANCED MATERIALS, 2018, 30 (18)
[20]   Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater [J].
Huang, Wei-Hsiang ;
Lin, Chia-Yu .
FARADAY DISCUSSIONS, 2019, 215 :205-215