Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level

被引:286
作者
Tey, Kok Soon [1 ]
Mekhilef, Saad [1 ]
机构
[1] Univ Malaya, Dept Elect Engn, Power Elect & Renewable Energy Res Lab PEARL, Kuala Lumpur, Malaysia
关键词
MPPT; Incremental conductance; Photovoltaic (PV) system; SEPIC converter; Fast changing solar irradiation; FUZZY-LOGIC CONTROLLER; PHOTOVOLTAIC SYSTEMS; TRACKING; ENERGY; IMPLEMENTATION; OPTIMIZATION; STATE; PV;
D O I
10.1016/j.solener.2014.01.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
During the increment of solar irradiation, the conventional incremental conductance algorithm responds inaccurately at the first step change in the converter duty cycle. This paper presents the conventional algorithm confusion and proposes a modified incremental conductance algorithm that responds accurately when the solar irradiation level increases. Moreover, the proposed algorithm shows zero oscillation in the power of the solar module after the maximum power point (MPP) is tracked. MATLAB simulation is carried out with the modified incremental conductance algorithm under a fast-changing solar irradiation level. Results of the modified, conventional and variable step size incremental conductance algorithms are compared. Finally, the hardware implementation, consisting of a single-ended primary-inductor converter (SEPIC) and a PIC controller, is applied as the maximum power point tracking (MPPT) controller. The simulation and experimental works showed that the proposed algorithm performs accurately and faster during the increment of solar irradiation level. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:333 / 342
页数:10
相关论文
共 32 条
[1]   High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids [J].
Abdelsalam, Ahmed K. ;
Massoud, Ahmed M. ;
Ahmed, Shehab ;
Enjeti, Prasad N. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (04) :1010-1021
[2]   A novel maximum power fuzzy logic controller for photovoltaic solar energy systems [J].
Altas, I. H. ;
Sharaf, A. M. .
RENEWABLE ENERGY, 2008, 33 (03) :388-399
[3]   Photovoltaic model and converter topology considerations for MPPT purposes [J].
Bennett, Thomas ;
Zilouchian, Ali ;
Messenger, Roger .
SOLAR ENERGY, 2012, 86 (07) :2029-2040
[4]   A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system [J].
Chaouachi, Aymen ;
Kamel, Rashad M. ;
Nagasaka, Ken .
SOLAR ENERGY, 2010, 84 (12) :2219-2229
[5]  
Chen BC, 2011, C IND ELECT APPL, P1621, DOI 10.1109/ICIEA.2011.5975850
[6]  
Coelho Roberto F., 2009, 2009 Brazilian Power Electronics Conference. COBEP 2009, P673, DOI 10.1109/COBEP.2009.5347723
[7]  
de Brito M. A. G., 2011, 2011 International Conference on Clean Electrical Power, P99, DOI 10.1109/ICCEP.2011.6036361
[8]   Maximum power point tracker for portable photovoltaic systems with resistive-like load [J].
de Cesare, G. ;
Caputo, D. ;
Nascetti, A. .
SOLAR ENERGY, 2006, 80 (08) :982-988
[9]  
Faranda R, 2008, IEEE POW ENER SOC GE, P2218
[10]   Predictive & adaptive MPPT perturb and observe method [J].
Femia, N. ;
Granozio, D. ;
Petrone, G. ;
Spagnuolo, G. ;
Vitelli, M. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2007, 43 (03) :934-950