Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries

被引:55
|
作者
Kang, Hyunseo [1 ]
Song, Minkyu [1 ]
Yang, MinHo [1 ]
Lee, Jae-won [1 ]
机构
[1] Dankook Univ, Dept Energy Engn, Cheonan 31116, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium metal; Lithium borate; Passivation; Anode; Cycling stability; SOLID-ELECTROLYTE INTERPHASE; RECHARGEABLE BATTERIES; LI; DEPOSITION; PERFORMANCE; MECHANISMS; MORPHOLOGY; CARBONATE; MATRIX; GROWTH;
D O I
10.1016/j.jpowsour.2020.229286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal is one of the most promising next generation anode materials to make a leap of the energy density of conventional lithium-ion batteries. However, lithium metal has fatal problems to overcome in cycling stability and safety. In this study, lithium metal is pre-treated to form a lithium borate layer (LBL) on the surface to suppress dendritic growth of lithium and stabilize the interface between the carbonate-based electrolyte and anode. The pre-treated lithium metal greatly enhances the cycling stability of the cells (Li parallel to Li symmetric and LiMn2O4 (LMO) parallel to Li cells). Especially, cycling test with the LMO parallel to Li cell reveals the pre-treatment with boric acid is more effective approach than addition of boric acid in the electrolyte because water is continuously generated during charge/discharge in the latter case and it causes side reactions and degrades the cycling performance. The LBL along with LiF stabilizes the solid electrolyte interface (SEI) layer and suppresses the dendritic growth of lithium. Due to the lithium-ion conducting ability of lithium borate, the pre-treated lithium anode also shows lower interfacial resistance than the pristine lithium and enhances rate capability.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Surface modification of lithium metal anode with lithium silicate-lithium phosphate composite layer for enhanced cycling stability
    Kwon, Na Ae
    Lee, Jae -won
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 307
  • [2] Lithium-coated carbon cloth for anode of Lithium rechargeable batteries with enhanced cycling stability
    Kang, Hyunseo
    Boyer, Mathew
    Hwang, Gyeong S.
    Lee, Jae-won
    ELECTROCHIMICA ACTA, 2019, 303 : 78 - 84
  • [3] Chemically polished lithium metal anode for high energy lithium metal batteries
    Tang, Wei
    Yin, Xuesong
    Chen, Zhongxin
    Fu, Wei
    Loh, Kian Ping
    Zheng, Guangyuan Wesley
    ENERGY STORAGE MATERIALS, 2018, 14 : 289 - 296
  • [4] Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries
    Aryanfar, Asghar
    Brooks, Daniel J.
    Colussi, Agustin J.
    Hoffmann, Michael R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (45) : 24965 - 24970
  • [5] Bifunctional carbon monofluoride (CFx) coating on a separator for lithium-metal batteries with enhanced cycling stability
    Lim, Jong-Heon
    Yang, MinHo
    Lee, Jae-won
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 878
  • [6] Evolution of Lithium Metal Anode Along Cycling in Working Lithium-Sulfur Batteries
    Bi, Chen-Xi
    Zhu, Yu-Jie
    Li, Zheng
    Zhao, Meng
    Zhang, Xue-Qiang
    Li, Bo-Quan
    Huang, Jia-Qi
    ADVANCED ENERGY MATERIALS, 2024, 14 (39)
  • [7] A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries
    Lee, Hongkyung
    Lee, Dong Jin
    Kim, Yun-Jung
    Park, Jung-Ki
    Kim, Hee-Tak
    JOURNAL OF POWER SOURCES, 2015, 284 : 103 - 108
  • [8] Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries
    Genovese, Matthew
    Louli, A. J.
    Weber, Rochelle
    Hames, Sam
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (14) : A3321 - A3325
  • [9] Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries
    Li, Tao
    Liu, He
    Shi, Peng
    Zhang, Qiang
    RARE METALS, 2018, 37 (06) : 449 - 458
  • [10] Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries
    Shen, Xin
    Cheng, Xinbing
    Shi, Peng
    Huang, Jiaqi
    Zhang, Xueqiang
    Yan, Chong
    Li, Tao
    Zhang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2019, 37 : 29 - 34