Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms

被引:383
作者
Dad, Haseeb Anwar [1 ]
Gu, Ting-Wei [1 ]
Zhu, Ao-Qing [1 ]
Huang, Lu-Qi [2 ]
Peng, Li-Hua [1 ]
机构
[1] Zhejiang Univ, Coll Pharmaceut Sci, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
[2] China Acad Chinese Med Sci, Natl Resource Ctr Chinese Mat Med, Beijing 100700, Peoples R China
基金
中国国家自然科学基金;
关键词
EXTRACELLULAR VESICLES; MULTIVESICULAR BODIES; GENE DELIVERY; ANTIINFLAMMATORY ACTIVITY; TRANSFERRIN RECEPTOR; NONVIRAL VECTORS; SIRNA DELIVERY; CELL-ADHESION; MILK EXOSOMES; STEM-CELLS;
D O I
10.1016/j.ymthe.2020.11.030
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Plant exosome-like nanovesicles, being innately replete with bioactive lipids, proteins, RNA, and other pharmacologically active molecules, offer unique morphological and compositional characteristics as natural nanocarriers. Furthermore, their compelling physicochemical traits underpin their modulative role in physiological processes, all of which have fostered the concept that these nanovesicles may be highly proficient in the development of next-generation biotherapeutic and drug delivery nanoplatforms to meet the ever-stringent demands of current clinical challenges. This review systemically deals with various facets of plant exosome-like nanovesicles ranging from their origin and isolation to identification of morphological composition, biological functions, and cargo-loading mechanisms. Efforts are made to encompass their biotherapeutic roles by elucidating their immunological modulating, anti-tumor, regenerative, and anti-inflammatory roles. We also shed light on re-engineering these nanovesicles into robust, innocuous, and non-immunogenic nanovectors for drug delivery through multiple stringent biological hindrances to various targeted organs such as intestine and brain. Finally, recent advances centered around plant exosome-like nanovesicles along with new insights into transdermal, transmembrane and targeting mechanisms of these vesicles are also elucidated. We expect that the continuing development of plant exosome-like nanovesicle-based therapeutic and delivery nanoplatforms will promote their clinical applications.
引用
收藏
页码:13 / 31
页数:19
相关论文
共 154 条
[1]   Hijacking Multivesicular Bodies Enables Long-Term and Exosome-Mediated Long-Distance Action of Anthrax Toxin [J].
Abrami, Laurence ;
Brandi, Lucia ;
Moayeri, Mahtab ;
Brown, Michael J. ;
Krantz, Bryan A. ;
Leppla, Stephen H. ;
van der Goot, F. Gisou .
CELL REPORTS, 2013, 5 (04) :986-996
[2]   The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage [J].
Abu Lila, Amr S. ;
Kiwada, Hiroshi ;
Ishida, Tatsuhiro .
JOURNAL OF CONTROLLED RELEASE, 2013, 172 (01) :38-47
[3]   Naturally Occurring Exosome Vesicles as Potential Delivery Vehicle for Bioactive Compounds [J].
Akuma, Precious ;
Okagu, Ogadimma D. ;
Udenigwe, Chibuike C. .
FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2019, 3
[4]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[5]   Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice [J].
Amaro, Maria Ines ;
Rocha, Joao ;
Vila-Real, Helder ;
Eduardo-Figueira, Maria ;
Mota-Filipe, Helder ;
Sepodes, Bruno ;
Ribeiro, Maria H. .
FOOD RESEARCH INTERNATIONAL, 2009, 42 (08) :1010-1017
[6]   Do Plant Cells Secrete Exosomes Derived from Multivesicular Bodies? [J].
An, Qianli ;
van Bel, Aart J. E. ;
Hueckelhoven, Ralph .
PLANT SIGNALING & BEHAVIOR, 2007, 2 (01) :4-7
[7]   Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus [J].
An, QL ;
Hückelhoven, R ;
Kogel, KH ;
Van Bel, AJE .
CELLULAR MICROBIOLOGY, 2006, 8 (06) :1009-1019
[8]   Exosomes From Human Cardiac Progenitor Cells for Therapeutic Applications: Development of a GMP-Grade Manufacturing Method [J].
Andriolo, Gabriella ;
Provasi, Elena ;
Lo Cicero, Viviana ;
Brambilla, Andrea ;
Soncin, Sabrina ;
Torre, Tiziano ;
Milano, Giuseppina ;
Biemmi, Vanessa ;
Vassalli, Giuseppe ;
Turchetto, Lucia ;
Barile, Lucio ;
Radrizzani, Marina .
FRONTIERS IN PHYSIOLOGY, 2018, 9
[9]   Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics [J].
Armstrong, James P. K. ;
Holme, Margaret N. ;
Stevens, Molly M. .
ACS NANO, 2017, 11 (01) :69-83
[10]   Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models [J].
Arntz, Onno J. ;
Pieters, Bartijn C. H. ;
Oliveira, Marina C. ;
Broeren, Mathijs G. A. ;
Bennink, Miranda B. ;
de Vries, Marieke ;
van Lent, Peter L. E. M. ;
Koenders, Marije I. ;
van den Berg, Wim B. ;
van der Kraan, Peter M. ;
van de Loo, Fons A. J. .
MOLECULAR NUTRITION & FOOD RESEARCH, 2015, 59 (09) :1701-1712