The ABC transporter G subfamily in Arabidopsis thaliana

被引:62
作者
Graefe, Katharina [2 ]
Schmitt, Lutz [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Biochem, Dusseldorf, Germany
[2] Forschungszentrum Julich, BIO NRW, Merowingerpl 1, D-40225 Dusseldorf, Germany
关键词
ABCG subfamily; Arabidopsis thaliana; plant ABC transporters; pleiotropy; promiscuity; sequence identity; substrate spectrum;
D O I
10.1093/jxb/eraa260
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
ABC transporters are ubiquitously present in all kingdoms and mediate the transport of a large spectrum of structurally different compounds. Plants possess high numbers of ABC transporters in relation to other eukaryotes; the ABCG subfamily in particular is extensive. Earlier studies demonstrated that ABCG transporters are involved in important processes influencing plant fitness. This review summarizes the functions of ABCG transporters present in the model plant Arabidopsis thaliana. These transporters take part in diverse processes such as pathogen response, diffusion barrier formation, or phytohormone transport. Studies involving knockout mutations reported pleiotropic phenotypes of the mutants. In some cases, different physiological roles were assigned to the same protein. The actual transported substrate(s), however, still remain to be determined for the majority of ABCG transporters. Additionally, the proposed substrate spectrum of different ABCG proteins is not always reflected by sequence identities between ABCG members. Applying only reverse genetics is thereby insufficient to clearly identify the substrate(s). We therefore stress the importance of in vitro studies in addition to in vivo studies in order to (i) clarify the substrate identity; (ii) determine the transport characteristics including directionality; and (iii) identify dimerization partners of the half-size proteins, which might in turn affect substrate specificity.
引用
收藏
页码:92 / 106
页数:15
相关论文
共 127 条
[1]   Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production [J].
Ahmad, Mudassar ;
Hirz, Melanie ;
Pichler, Harald ;
Schwab, Helmut .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (12) :5301-5317
[2]   Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein [J].
Al-Shawi, MK ;
Polar, MK ;
Omote, H ;
Figler, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (52) :52629-52640
[3]   AtABCG29 Is a Monolignol Transporter Involved in Lignin Biosynthesis [J].
Alejandro, Santiago ;
Lee, Yuree ;
Tohge, Takayuki ;
Sudre, Damien ;
Osorio, Sonia ;
Park, Jiyoung ;
Bovet, Lucien ;
Lee, Youngsook ;
Geldner, Niko ;
Fernie, Alisdair R. ;
Martinoia, Enrico .
CURRENT BIOLOGY, 2012, 22 (13) :1207-1212
[4]  
ALSHAWI MK, 1993, J BIOL CHEM, V268, P4197
[5]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[6]   Evolutionary analyses of ABC transporters of Dictyostelium discoideum [J].
Anjard, C ;
Loomis, WF .
EUKARYOTIC CELL, 2002, 1 (04) :643-652
[7]   A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking [J].
Awai, Koichiro ;
Xu, Changcheng ;
Tamot, Banita ;
Benning, Christoph .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (28) :10817-10822
[8]   Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants [J].
Badri, Dayakar V. ;
Loyola-Vargas, Victor M. ;
Broeckling, Corey D. ;
De-la-Pena, Clelia ;
Jasinski, Michal ;
Santelia, Diana ;
Martinoia, Enrico ;
Sumner, Lloyd W. ;
Banta, Lois M. ;
Stermitz, Frank ;
Vivanco, Jorge M. .
PLANT PHYSIOLOGY, 2008, 146 (02) :762-771
[9]   An ABC Transporter Mutation Alters Root Exudation of Phytochemicals That Provoke an Overhaul of Natural Soil Microbiota [J].
Badri, Dayakar V. ;
Quintana, Naira ;
El Kassis, Elie G. ;
Kim, Hye Kyong ;
Choi, Young Hae ;
Sugiyama, Akifumi ;
Verpoorte, Robert ;
Martinoia, Enrico ;
Manter, Daniel K. ;
Vivanco, Jorge M. .
PLANT PHYSIOLOGY, 2009, 151 (04) :2006-2017
[10]   Expression of the Tobacco Non-symbiotic Class 1 Hemoglobin Gene Hb1 Reduces Cadmium Levels by Modulating Cd Transporter Expression Through Decreasing Nitric Oxide and ROS Level in Arabidopsis [J].
Bahmani, Ramin ;
Kim, DongGwan ;
Na, JongDuk ;
Hwang, Seongbin .
FRONTIERS IN PLANT SCIENCE, 2019, 10