Analysis of Population Structure and Genetic Diversity in Rice Germplasm Using SSR Markers: An Initiative Towards Association Mapping of Agronomic Traits in Oryza Sativa

被引:130
作者
Nachimuthu, Vishnu Varthini [1 ]
Muthurajan, Raveendran [3 ]
Duraialaguraja, Sudhakar [3 ]
Sivakami, Rajeswari [2 ]
Pandian, Balaji Aravindhan [2 ]
Ponniah, Govinthraj [5 ]
Gunasekaran, Karthika [4 ]
Swaminathan, Manonmani [2 ]
Suji, K. K. [3 ]
Sabariappan, Robin [6 ]
机构
[1] Int Rice Res Inst, Plant Breeding & Genet Div, Plant Mol Biol, POB 933, Manila 1099, Philippines
[2] Tamil Nadu Agr Univ, Ctr Plant Breeding & Genet, Coimbatore 641003, Tamil Nadu, India
[3] Tamil Nadu Agr Univ, Ctr Plant Mol Biol & Biotechnol, Coimbatore 641003, Tamil Nadu, India
[4] Int Crops Res Inst Semi Arid Trop, Crop Physiol Lab, Hyderabad, Andhra Pradesh, India
[5] Int Crops Res Inst Semi Arid Trop, Hyderabad, Andhra Pradesh, India
[6] Tamil Nadu Agr Univ, Ctr Excellence Mol Breeding, Coimbatore 641003, Tamil Nadu, India
关键词
Rice; Genetic diversity; Population structure; Polymorphism information content; Molecular variance; Association mapping; MEDICINAL RICE; CULTIVARS; COLLECTION; VARIETIES; SOFTWARE; WILD; L; DIFFERENTIATION; POLYMORPHISMS; CONSERVATION;
D O I
10.1186/s12284-015-0062-5
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background: Genetic diversity is the main source of variability in any crop improvement program. It serves as a reservoir for identifying superior alleles controlling key agronomic and quality traits through allele mining/association mapping. Association mapping based on LD (Linkage dis-equilibrium), non-random associations between causative loci and phenotype in natural population is highly useful in dissecting out genetic basis of complex traits. For any successful association mapping program, understanding the population structure and assessing the kinship relatedness is essential before making correlation between superior alleles and traits. The present study was aimed at evaluating the genetic variation and population structure in a collection of 192 rice germplasm lines including local landraces, improved varieties and exotic lines from diverse origin. Results: A set of 192 diverse rice germplasm lines were genotyped using 61 genome wide SSR markers to assess the molecular genetic diversity and genetic relatedness. Genotyping of 192 rice lines using 61 SSRs produced a total of 205 alleles with the PIC value of 0.756. Population structure analysis using model based and distance based approaches revealed that the germplasm lines were grouped into two distinct subgroups. AMOVA analysis has explained that 14 % of variation was due to difference between with the remaining 86 % variation may be attributed by difference within groups. Conclusions: Based on these above analysis viz., population structure and genetic relatedness, a core collection of 150 rice germplasm lines were assembled as an association mapping panel for establishing marker trait associations.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Assessment of the genetic diversity and population structure in temperate japonica rice germplasm used in breeding in Chile, with SSR markers
    Becerra, Viviana
    Paredes, Mario
    Ferreira, Marcio E.
    Gutierrez, Eduardo
    Diaz, Lucy M.
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2017, 77 (01): : 15 - 26
  • [22] Analysis of genetic diversity, population structure and phylogenetic relationships of rice (Oryza sativa L.) cultivars using simple sequence repeat (SSR) markers
    Salem, Khaled F. M.
    Safhi, Fatmah Ahmed
    Alwutayd, Khairiah Mubarak
    Abozahra, Mahmoud S.
    Almohisen, Ibrahim A. A.
    Alsharari, Sultan F.
    Gangwar, Priyanka
    Rady, Asmaa M. S.
    Hendawy, Marwa F. A.
    Ibrahim, Amira A.
    GENETIC RESOURCES AND CROP EVOLUTION, 2024, 71 (05) : 2213 - 2227
  • [23] Genetic diversity, population structure, and association mapping of agronomic traits in waxy and normal maize inbred lines
    Sa, K. J.
    Park, J. Y.
    Choi, S. H.
    Kim, B. W.
    Park, K. J.
    Lee, J. K.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (03) : 7502 - 7518
  • [24] Population structure and genetic diversity in elite sugar beet germplasm investigated with SSR markers
    Li, Jinquan
    Schulz, Britta
    Stich, Benjamin
    EUPHYTICA, 2010, 175 (01) : 35 - 42
  • [25] Variability Assessment for Root and Drought Tolerance Traits and Genetic Diversity Analysis of Rice Germplasm using SSR Markers
    Verma, H.
    Borah, J. L.
    Sarma, R. N.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [26] Analysis of Genetic Diversity and Population Structure Using SSR Markers in Tobacco
    Xia, Yanshi
    Guo, Peiguo
    Li, Ronghua
    Lu, Yonghua
    Qiu, Miaowen
    Zhao, Waicai
    Carfi, Leonardo
    He, Qifang
    Yu, Yiwen
    ADVANCES IN APPLIED SCIENCES AND MANUFACTURING, PTS 1 AND 2, 2014, 850-851 : 1243 - +
  • [27] Analysis of genetic diversity and population structure in sweetpotato using SSR markers
    Liu, Cheng
    Zhao, Ning
    Jiang, Zhi-cheng
    Zhang, Huan
    Zhai, Hong
    He, Shao-zhen
    Gao, Shao-pei
    Liu, Qing-chang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2023, 22 (11) : 3408 - 3415
  • [28] Evaluation of Genetic Diversity and Population Structure Analysis among Germplasm of Agaricus bisporus by SSR Markers
    An, Hyejin
    Lee, Hwa-Yong
    Shin, Hyeran
    Bang, Jun Hyoung
    Han, Seahee
    Oh, Youn-Lee
    Jang, Kab-Yeul
    Cho, Hyunwoo
    Hyun, Tae Kyung
    Sung, Jwakyung
    So, Yoon-Sup
    Jo, Ick-Hyun
    Chung, Jong-Wook
    MYCOBIOLOGY, 2021, 49 (04) : 376 - 384
  • [29] Genetic diversity associated with agronomic traits using microsatellite markers in Pakistani rice landraces
    Pervaiz, Zahida Hassan
    Rabbani, M. Ashiq
    Khaliq, Ishtiaq
    Pearce, Stephen R.
    Malik, Salman A.
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2010, 13 (03): : 1 - 12
  • [30] Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT)
    Golkar, Pooran
    Nourbakhsh, Venus
    INDUSTRIAL CROPS AND PRODUCTS, 2019, 130 : 170 - 178