Sulodexide attenuates endoplasmic reticulum stress induced by myocardial ischaemia/reperfusion by activating the PI3K/Akt pathway

被引:41
|
作者
Shen, Danping [1 ,2 ]
Chen, Ruiyao [1 ,2 ]
Zhang, Lijing [1 ,2 ]
Rao, Zhiheng [1 ,2 ]
Ruan, Yongxue [1 ,2 ]
Li, Lei [1 ,2 ]
Chu, Maoping [1 ,2 ]
Zhang, Yuanhai [1 ,2 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 2, Childrens Heart Ctr, Inst Cardiovasc Dev & Translat Med, Wenzhou, Zhejiang, Peoples R China
[2] Wenzhou Med Univ, Yuying Childrens Hosp, Wenzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
endoplasmic reticulum stress; myocardial ischaemia/reperfusion; PI3K/Akt; sulodexide; ISCHEMIA-REPERFUSION INJURY; ER STRESS; GLYCOSAMINOGLYCAN SULODEXIDE; ISCHEMIA/REPERFUSION INJURY; INDUCED APOPTOSIS; CELL; PROTEIN; PROLIFERATION; INHIBITION; DISEASE;
D O I
10.1111/jcmm.14367
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Acute myocardial ischaemia/reperfusion (MI/R) injury causes severe arrhythmias with a high rate of lethality. Extensive research focus on endoplasmic reticulum (ER) stress and its dysfunction which leads to cardiac injury in MI/R Our study evaluated the effects of sulodexide (SDX) on MI/R by establishing MI/R mice models and in vitro oxidative stress models in H9C2 cells. We found that SDX decreases cardiac injury during ischaemia reperfusion and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase and reduced malondialdehyde in mice plasm, increased Bcl-2 expression, decreased BAX expression in a mouse model of MI/R. In vitro, SDX exerted a protective effect by the suppression of the ER stress which induced by tert-butyl hydroperoxide (TBHP) treatment. Both of the in vivo and in vitro effects were involved in the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway. Inhibition of PI3K/Akt pathway by specific inhibitor, LY294002, partially reduced the protective effect of SDX. In short, our results suggested that the cardioprotective role of SDX was related to the suppression of ER stress in mice MI/R models and TBHP-induced H9C2 cell injury which was through the PI3K/Akt signalling pathway.
引用
收藏
页码:5063 / 5075
页数:13
相关论文
共 50 条
  • [31] Salidroside attenuates myocardial ischemia/reperfusion injury via AMPK-induced suppression of endoplasmic reticulum stress and mitochondrial fission
    Tian, Xin
    Huang, Ye
    Zhang, Xiaofeng
    Fang, Rong
    Feng, Yi
    Zhang, Wanfang
    Li, Ling
    Li, Tian
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2022, 448
  • [32] Globular Adiponectin Attenuates Myocardial Ischemia/Reperfusion Injury by Upregulating Endoplasmic Reticulum Ca2+-ATPase Activity and Inhibiting Endoplasmic Reticulum Stress
    Guo, Jia
    Bian, Yunfei
    Bai, Rui
    Li, Hong
    Fu, Minghuan
    Xiao, Chuanshi
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2013, 62 (02) : 143 - 153
  • [33] Sivelestat ameliorates sepsis-induced myocardial dysfunction by activating the PI3K/AKT/mTOR signaling pathway
    Geng, Hongyu
    Zhang, Hongbo
    Cheng, Lianfang
    Dong, Shimin
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 128
  • [34] RETRACTED: TRIM59 attenuates inflammation and apoptosis caused by myocardial ischemia reperfusion injury by activating the PI3K/Akt signaling pathway (Retracted Article)
    Lv, Z-Q
    Yang, C-Y
    Xing, Q-S
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (07) : 4005 - 4015
  • [35] The PI3K/Akt/mTOR signaling pathway regulates lipid metabolism mediated by endoplasmic reticulum stress in goose primary hepatocytes
    Luo, Z. Y.
    Song, Q.
    Xiong, X. P.
    Abdulai, M.
    Liu, H. H.
    Li, L.
    Xu, H. Y.
    Hu, S. Q.
    Han, C. C.
    EUROPEAN POULTRY SCIENCE, 2021, 85
  • [36] Sevoflurane Alleviates Myocardial Ischemia-Reperfusion Injury in Rats by Reducing Oxidative Stress and Activating PI3K/Akt/GSK3β Signaling Pathway
    Zhang, Zhengbing
    Luo, Chunfang
    Wan, Caiyun
    Xu, Kai
    Huang, Fang
    Feng, Yinghui
    Li, Ming
    Min, Wei
    LATIN AMERICAN JOURNAL OF PHARMACY, 2020, 39 (02): : 394 - 400
  • [37] Naringin attenuates rat myocardial ischemia/reperfusion injury via PI3K/Akt pathway-mediated inhibition of apoptosis, oxidative stress and autophagy
    Li, Fengwei
    Zhan, Zhenjian
    Qian, Jin
    Cao, Chuanbin
    Yao, Wei
    Wang, Neng
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (02)
  • [38] Baicalein facilitates gastric cancer cell apoptosis by triggering endoplasmic reticulum stress via repression of the PI3K/AKT pathway
    Junjie Shen
    Zhiwen Yang
    Xinlin Wu
    Guodong Yao
    Mingxing Hou
    Applied Biological Chemistry, 66
  • [39] Dexmedetomidine Attenuates Ischemia/Reperfusion-Induced Myocardial Inflammation and Apoptosis Through Inhibiting Endoplasmic Reticulum Stress Signaling
    Yang, Yu-fan
    Wang, Hui
    Song, Nan
    Jiang, Ya-hui
    Zhang, Jun
    Meng, Xiao-wen
    Feng, Xiao-mei
    Liu, Hong
    Peng, Ke
    Ji, Fu-hai
    JOURNAL OF INFLAMMATION RESEARCH, 2021, 14 : 1217 - 1233
  • [40] Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review
    Abd Halim, Syarifah Aisyah Syed
    Abd Rashid, Norhashima
    Woon, Choy Ker
    Jalil, Nahdia Afiifah Abdul
    PHARMACEUTICALS, 2023, 16 (05)