STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR THE SPLIT EQUALITY PROBLEM IN BANACH SPACES

被引:0
作者
Wang, Meiying [1 ]
Xu, Tongxin [2 ]
Shi, Luoyi [3 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
[3] Tiangong Univ, Sch Software, Tianjin 300387, Peoples R China
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2022年 / 2022卷
关键词
Bregman distance; Nonexpansive mapping; Self-adaptive method; Split equality problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the Bregman distance, we introduce a self-adaptive method for solving a split equality problem in p-uniformly convex uniformly smooth Banach spaces. The advantage of the proposed algorithm is that the stepsize selection is self-adaptive and no prior estimation of operator norm is required. Under relatively mild conditions, we prove the strong convergence of the proposed algorithm. Finally, numerical examples are provided to verify the convergence of the algorithm.
引用
收藏
页数:13
相关论文
共 22 条
[1]  
Butnariu D, 2000, J CONVEX ANAL, V7, P319
[3]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[4]  
Censor Y., 1994, Numer. Algorithms, V8, P221, DOI [10.1007/BF02142692, DOI 10.1007/BF02142692]
[5]  
Cioranescu I., 1990, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems
[6]   Convergence analysis for variational inequalities and fixed point problems in reflexive Banach spaces [J].
Jolaoso, Lateef Olakunle ;
Shehu, Yekini ;
Cho, Yeol Je .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[7]   ITERATIVE METHODS FOR SOLVING SYSTEMS OF VARIATIONAL INEQUALITIES IN REFLEXIVE BANACH SPACES [J].
Kassay, Gabor ;
Reich, Simeon ;
Sabach, Shoham .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) :1319-1344
[8]  
Lindenstrauss J., 1979, CLASSICAL BANACH SPA
[9]   Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization [J].
Mainge, Paul-Emile .
SET-VALUED ANALYSIS, 2008, 16 (7-8) :899-912
[10]   Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces [J].
Mewomo, O. T. ;
Ogbuisi, F. U. .
QUAESTIONES MATHEMATICAE, 2018, 41 (01) :129-148