Low-energy Landau levels of Bernal zigzag graphene ribbons

被引:3
作者
Huang, Y. C. [1 ]
Chang, C. P. [2 ,3 ]
Su, W. S. [2 ,3 ]
Lin, M. F. [4 ]
机构
[1] Kao Yuan Univ, Ctr Gen Educ, Kaohsiung 821, Taiwan
[2] Tainan Univ Technol, Ctr Gen Educ, Tainan 710, Taiwan
[3] Natl Ctr Theoret Sci, Tainan 701, Taiwan
[4] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
关键词
conduction bands; Fermi level; graphene; Landau levels; tight-binding calculations; valence bands; wave functions; STACKED NANOGRAPHITE RIBBONS; ELECTRIC-FIELD; OPTICAL-PROPERTIES; DIRAC-FERMIONS; GRAPHITE; CARBON; 1ST-PRINCIPLES; GAS;
D O I
10.1063/1.3159643
中图分类号
O59 [应用物理学];
学科分类号
摘要
Low-energy Landau levels of Bernal zigzag graphene ribbons in the presence of a uniform perpendicular magnetic field (B) are investigated by the Peierls coupling tight-binding model. State energies and associated wave functions are dominated by the B-field strength and the k(z)-dependent inter-ribbon interactions. The occupied valence bands are asymmetric to the unoccupied conduction bands about the Fermi level. Many doubly degenerate Landau levels and singlet curving magnetobands exist along the k(x) and k(z) directions, respectively. The k(z)-dependent inter-ribbon interactions dramatically modify the magnetobands, such as the lift of double degeneracy, the change in state energies, and the production of two groups of curving magnetobands. They also change the characteristics of the wave functions and cause the redistribution of the charge-carrier density. The k(z)-dependent wave functions are further used to predict the selection rule of the optical transition.
引用
收藏
页数:8
相关论文
共 42 条
[31]   Intercalated nanographite: Structure and electronic properties [J].
Prasad, BLV ;
Sato, H ;
Enoki, T ;
Hishiyama, Y ;
Kaburagi, Y ;
Rao, AM ;
Sumanasekera, GU ;
Eklund, PC .
PHYSICAL REVIEW B, 2001, 64 (23)
[32]   Heat-treatment effect on the nanosized graphite π-electron system during diamond to graphite conversion [J].
Prasad, BLV ;
Sato, H ;
Enoki, T ;
Hishiyama, Y ;
Kaburagi, Y ;
Rao, AM ;
Oshida, K ;
Endo, M .
PHYSICAL REVIEW B, 2000, 62 (16) :11209-11218
[33]   Energy-gap modulations of graphene ribbons under external fields:: A theoretical study [J].
Ritter, C. ;
Makler, S. S. ;
Latge, A. .
PHYSICAL REVIEW B, 2008, 77 (19)
[34]   Landau level spectroscopy of ultrathin graphite layers [J].
Sadowski, M. L. ;
Martinez, G. ;
Potemski, M. ;
Berger, C. ;
de Heer, W. A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (26)
[35]   Tight-binding band structures of nanographite multiribbons [J].
Shyu, FL ;
Lin, MF ;
Chang, CP ;
Chen, RB ;
Shyu, JS ;
Wang, YC ;
Liao, CH .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (11) :3348-3355
[36]   Energy gaps in graphene nanoribbons [J].
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2006, 97 (21)
[37]   Electronic and magnetic properties of nanographite ribbons [J].
Wakabayashi, K ;
Fujita, M ;
Ajiki, H ;
Sigrist, M .
PHYSICAL REVIEW B, 1999, 59 (12) :8271-8282
[38]   Carbon nanowalls and related materials [J].
Wu, YH ;
Yang, BJ ;
Zong, BY ;
Sun, H ;
Shen, ZX ;
Feng, YP .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (04) :469-477
[39]   POLYPERINAPHTHALENE FILM FORMATION BY PULSED-LASER DEPOSITION WITH A TARGET OF PERYLENETETRACARBOXYLIC DIANHYDRIDE [J].
YUDASAKA, M ;
TASAKA, Y ;
TANAKA, M ;
KAMO, H ;
OHKI, Y ;
USAMI, S ;
YOSHIMURA, S .
APPLIED PHYSICS LETTERS, 1994, 64 (24) :3237-3239
[40]   Ribbon-like nanostructures transformed from carbon nanotubes at high temperature and pressure [J].
Zhang, M ;
Wu, DH ;
Xu, CL ;
Xu, YF ;
Wang, WK .
NANOSTRUCTURED MATERIALS, 1998, 10 (07) :1145-1152