Monotonicity of solutions for the uniformly elliptic nonlocal Bellman equation on the upper half space

被引:0
作者
Chen, Xueying [1 ]
Bao, Gejun [1 ]
Li, Guanfeng [1 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词
Sliding method; Uniformly elliptic nonlocal Bellman operator; Maximum principle; Upper half space; Monotonicity; Uniqueness; MOVING PLANES; LAPLACIAN; SYMMETRY;
D O I
10.1016/j.jmaa.2020.124843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a sliding method for the uniformly elliptic nonlocal Bellman operator. We first establish a maximum principle on an upper half space, which plays an important role in the sliding method. Then we consider equations involving the uniformly elliptic nonlocal Bellman operator on the upper half space, and prove the monotonicity and uniqueness of solutions for the uniformly elliptic nonlocal Bellman equation. We use a new idea-estimating the singular integrals defining the operator along a sequence of approximate maximum points. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 28 条
[1]   An analytic approach to purely nonlocal Bellman equations arising in models of stochastic control [J].
Abels, H. ;
Kassmann, M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (01) :29-56
[2]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO
[3]  
2-6
[4]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[5]  
Berestycki H., 1990, Analysis, Etc., P115
[6]  
Berestycki H., 1988, J Geom Phys, V5, P237, DOI [10.1016/0393-0440(88)90006-X, DOI 10.1016/0393-0440(88)90006-X]
[7]  
Berestycki H., 1991, Bol Soc Brasil Nat (NS), V22, P1, DOI DOI 10.1007/BF01244896
[8]   The Evans-Krylov theorem for nonlocal fully nonlinear equations [J].
Caffarell, Luis ;
Silvestre, Luis .
ANNALS OF MATHEMATICS, 2011, 174 (02) :1163-1187
[9]  
CAFFARELLI L., 2015, Ann. PDE, V1, P4, DOI [10.1007/s40818-015-0005-x, DOI 10.1007/S40818-015-0005-X]
[10]   MOVING PLANES FOR NONLINEAR FRACTIONAL LAPLACIAN EQUATION WITH NEGATIVE POWERS [J].
Cai, Miaomiao ;
Ma, Li .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) :4603-4615