ON ESTIMATION OF UNIFORM CONVERGENCE OF ANALYTIC FUNCTIONS BY (p, q)-BERNSTEIN OPERATORS

被引:2
|
作者
Mursaleen, M. [1 ]
Khan, Faisal [1 ]
Saif, Mohd [2 ]
Khan, Abdul Hakim [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
[2] Aligarh Muslim Univ, Dept Appl Math, Aligarh, Uttar Pradesh, India
来源
KOREAN JOURNAL OF MATHEMATICS | 2019年 / 27卷 / 02期
关键词
(p; q)-integers; q)-Bernstein operators; divided difference; analytic function; uniform convergence; Q-BERNSTEIN POLYNOMIALS; APPROXIMATION; Q)-ANALOG;
D O I
10.11568/kjm.2019.27.2.505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the approximation properties of a continuous function by the sequence of (p, q)-Bernstein operators for q > p > 1. We obtain bounds of (p, q)-Bernstein operators. Further we prove that if a continuous function admits an analytic continuation into the disk {z : vertical bar z vertical bar <= rho, then B-p,q(n)(g; z) -> g(z) (n -> infinity) uniformly on any compact set in the given disk {z : vertical bar z vertical bar <= rho}, rho > 0.
引用
收藏
页码:505 / 514
页数:10
相关论文
共 50 条
  • [41] On Durrmeyer-type generalization of (p, q)-Bernstein operators
    Sharma, Honey
    ARABIAN JOURNAL OF MATHEMATICS, 2016, 5 (04) : 239 - 248
  • [42] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [43] (p, q)-Bernstein Bases and Operators over Arbitrary Intervals
    Khan, Asif
    Sharma, Vinita
    Khan, Khalid
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (04): : 1447 - 1456
  • [44] On Ideal Convergence of Sequences of Linear Operators in the Space of Analytic Functions
    Cetin, Nursel
    FILOMAT, 2016, 30 (01) : 241 - 251
  • [45] A basic problem of (p, q)-Bernstein-type operators
    Cai, Qing-Bo
    Xu, Xiao-Wei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [46] On Durrmeyer Type λ-Bernstein Operators via (p, q)-Calculus
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [47] Convergence of modification of the Kantorovich-type q-Bernstein-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1261 - 1272
  • [48] (p, q)-Bernstein Bases and Operators over Arbitrary Intervals
    Asif Khan
    Vinita Sharma
    Khalid Khan
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 1447 - 1456
  • [49] Approximation by Fuzzy (p, q)-Bernstein-Chlodowsky Operators
    Ozkan, Esma Yildiz
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 113 - 132
  • [50] Security of image transfer and innovative results for (p,q)-Bernstein-Schurer p,q )-Bernstein-Schurer operators
    Bilgin, Nazmiye Gonul
    Kaya, Yusuf
    Eren, Melis
    AIMS MATHEMATICS, 2024, 9 (09): : 23812 - 23836