Integrative Analysis of Whole Genome Sequencing and Phenotypic Resistance Toward Prediction of Trimethoprim-Sulfamethoxazole Resistance in Staphylococcus aureus

被引:22
作者
Nurjadi, Dennis [1 ]
Zizmann, Elfi [1 ]
Chanthalangsy, Quan [1 ]
Heeg, Klaus [1 ]
Boutin, Sebastien [1 ]
机构
[1] Heidelberg Univ Hosp, Dept Infect Dis Med Microbiol & Hyg, Heidelberg, Germany
关键词
AMR prediction; Staphylococcus aureus; co-trimoxazole; trimethoprim resistance; sulfamethoxazole resistance; WGS; antifolate antibiotics; DIHYDROFOLATE-REDUCTASE; GENE;
D O I
10.3389/fmicb.2020.607842
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
As whole genome sequencing is becoming more accessible and affordable for clinical microbiological diagnostics, the reliability of genotypic antimicrobial resistance (AMR) prediction from sequencing data is an important issue to address. Computational AMR prediction can be performed at multiple levels. The first-level approach, such as simple AMR search relies heavily on the quality of the information fed into the database. However, AMR due to mutations are often undetected, since this is not included in the database or poorly documented. Using co-trimoxazole (trimethoprim-sulfamethoxazole) resistance in Staphylococcus aureus, we compared single-level and multi-level analysis to investigate the strengths and weaknesses of both approaches. The results revealed that a single mutation in the AMR gene on the nucleotide level may produce false positive results, which could have been detected if protein sequence analysis would have been performed. For AMR predictions based on chromosomal mutations, such as the folP gene of S. aureus, natural genetic variations should be taken into account to differentiate between variants linked to genetic lineage (MLST) and not over-estimate the potential resistant variants. Our study showed that careful analysis of the whole genome data and additional criterion such as lineage-independent mutations may be useful for identification of mutations leading to phenotypic resistance. Furthermore, the creation of reliable database for point mutations is needed to fully automatized AMR prediction.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks [J].
Aytan-Aktug, D. ;
Clausen, P. T. L. C. ;
Bortolaia, V ;
Aarestrup, F. M. ;
Lund, O. .
MSYSTEMS, 2020, 5 (01)
[2]   TRIMETHOPRIM A SULPHONAMIDE POTENTIATOR [J].
BUSHBY, SRM ;
HITCHING.GH .
BRITISH JOURNAL OF PHARMACOLOGY, 1968, 33 (01) :72-+
[3]   Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis [J].
Cassini, Alessandro ;
Hogberg, Liselotte Diaz ;
Plachouras, Diamantis ;
Quattrocchi, Annalisa ;
Hoxha, Ana ;
Simonsen, Gunnar Skov ;
Colomb-Cotinat, Melanie ;
Kretzschmar, Mirjam E. ;
Devleesschauwer, Brecht ;
Cecchini, Michele ;
Ouakrim, Driss Ait ;
Oliveira, Tiago Cravo ;
Struelens, Marc J. ;
Suetens, Carl ;
Monnet, Dominique L. ;
Strauss, Reinhild ;
Mertens, Karl ;
Struyf, Thomas ;
Catry, Boudewijn ;
Latour, Katrien ;
Ivanov, Ivan Nikolaev ;
Dobreva, Elina Georgieva ;
Tambic Andrasevic, Arjana ;
Soprek, Silvija ;
Budimir, Ana ;
Paphitou, Niki ;
Zemlickova, Helena ;
Olsen, Stefan Schytte ;
Sonksen, Ute Wolff ;
Martin, Pille ;
Ivanova, Marina ;
Lyytikainen, Outi ;
Jalava, Jari ;
Coignard, Bruno ;
Eckmanns, Tim ;
Abu Sin, Muna ;
Haller, Sebastian ;
Daikos, George L. ;
Gikas, Achilleas ;
Tsiodras, Sotirios ;
Kontopidou, Flora ;
Toth, Akos ;
Hajdu, Agnes ;
Guolaugsson, Olafur ;
Kristinsson, Karl G. ;
Murchan, Stephen ;
Burns, Karen ;
Dsstat, Patrizio Pezzotti ;
Gagliotti, Carlo ;
Dumpis, Uga .
LANCET INFECTIOUS DISEASES, 2019, 19 (01) :56-66
[4]   CHARACTERIZATION OF THE GENE FOR THE CHROMOSOMAL DIHYDROFOLATE-REDUCTASE (DHFR) OF STAPHYLOCOCCUS-EPIDERMIDIS ATCC-14990 - THE ORIGIN OF THE TRIMETHOPRIM-RESISTANT S1 DHFR FROM STAPHYLOCOCCUS-AUREUS [J].
DALE, GE ;
BROGER, C ;
HARTMAN, PG ;
LANGEN, H ;
PAGE, MGP ;
THEN, RL ;
STUBER, D .
JOURNAL OF BACTERIOLOGY, 1995, 177 (11) :2965-2970
[5]   Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study [J].
Doyle, Ronan M. ;
O'Sullivan, Denise M. ;
Aller, Sean D. ;
Bruchmann, Sebastian ;
Clark, Taane ;
Pelegrin, Andreu Coello ;
Cormican, Martin ;
Benavente, Ernest Diez ;
Ellington, Matthew J. ;
McGrath, Elaine ;
Motro, Yair ;
Thi Phuong Thuy Nguyen ;
Phelan, Jody ;
Shaw, Liam P. ;
Stabler, Richard A. ;
van Belkum, Alex ;
van Dorp, Lucy ;
Woodford, Neil ;
Moran-Gilad, Jacob ;
Huggett, Jim F. ;
Harris, Kathryn A. .
MICROBIAL GENOMICS, 2020, 6 (02)
[6]   The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee [J].
Ellington, M. J. ;
Ekelund, O. ;
Aarestrup, F. M. ;
Canton, R. ;
Doumith, M. ;
Giske, C. ;
Grundman, H. ;
Hasman, H. ;
Holden, M. T. G. ;
Hopkins, K. L. ;
Iredell, J. ;
Kahlmeter, G. ;
Koser, C. U. ;
MacGowan, A. ;
Mevius, D. ;
Mulvey, M. ;
Naas, T. ;
Peto, T. ;
Rolain, J. -M. ;
Samuelsen, O. ;
Woodford, N. .
CLINICAL MICROBIOLOGY AND INFECTION, 2017, 23 (01) :2-22
[7]   bio-samtools 2: a package for analysis and visualization of sequence and alignment data with SAMtools in Ruby [J].
Etherington, Graham J. ;
Ramirez-Gonzalez, Ricardo H. ;
MacLean, Dan .
BIOINFORMATICS, 2015, 31 (15) :2565-2567
[8]   Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates [J].
Feldgarden, Michael ;
Brover, Vyacheslav ;
Haft, Daniel H. ;
Prasad, Arjun B. ;
Slotta, Douglas J. ;
Tolstoy, Igor ;
Tyson, Gregory H. ;
Zhao, Shaohua ;
Hsu, Chih-Hao ;
McDermott, Patrick F. ;
Tadesse, Daniel A. ;
Morales, Cesar ;
Simmons, Mustafa ;
Tillman, Glenn ;
Wasilenko, Jamie ;
Folster, Jason P. ;
Klimke, William .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2019, 63 (11)
[9]   The Structural and Functional Basis for Recurring Sulfa Drug Resistance Mutations in Staphylococcus aureus Dihydropteroate Synthase [J].
Griffith, Elizabeth C. ;
Wallace, Miranda J. ;
Wu, Yinan ;
Kumar, Gyanendra ;
Gajewski, Stefan ;
Jackson, Pamela ;
Phelps, Gregory A. ;
Zheng, Zhong ;
Rock, Charles O. ;
Lee, Richard E. ;
White, Stephen W. .
FRONTIERS IN MICROBIOLOGY, 2018, 9
[10]   ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes [J].
Gupta, Sushim Kumar ;
Padmanabhan, Babu Roshan ;
Diene, Seydina M. ;
Lopez-Rojas, Rafael ;
Kempf, Marie ;
Landraud, Luce ;
Rolain, Jean-Marc .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (01) :212-220