Bayesian methods for multiaspect target tracking in image sequences

被引:42
|
作者
Bruno, MGS [1 ]
机构
[1] Inst Tecnol Aeronaut, Div Engn Eletron, BR-12228900 Sao Jose Dos Campos, Brazil
关键词
Bayesian estimation; hidden Markov models; multiaspect target tracking; noricausal Gauss-Markov random fields; particle filters;
D O I
10.1109/TSP.2004.828903
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce new algorithms for automatic tracking of multiaspect targets in cluttered image sequences. We depart from the conventional correlation filter/Kalman filter association approach to target tracking and propose instead a nonlinear Bayesian methodology that enables direct tracking from the image sequence incorporating the statistical models for the background clutter, target motion, and target aspect change. Proposed algorithms include 1) a batch hidden Markov model (HMM) smoother and a sequential HMM filter for joint multiframe target detection and tracking and 2) two mixed-state sequential importance sampling, trackers based on the sampling/importance resampling (SIR) and the auxiliary particle filtering (APF) techniques. Performance studies show that the proposed algorithms outperform the association of a bank of template correlators and a Kalman filter in adverse scenarios of low, target-to-clutter ratio and uncertainty in the true target aspect.
引用
收藏
页码:1848 / 1861
页数:14
相关论文
共 50 条
  • [1] Mixed-state particle filters for multiaspect target tracking in image sequences
    Bruno, MGS
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO AND ELECTROACOUSTICS MULTIMEDIA SIGNAL PROCESSING, 2003, : 165 - 168
  • [2] Bayesian smoothing and filtering for multiframe, multiaspect target detection and tracking
    Bruno, MGS
    Moura, JMF
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 561 - 564
  • [3] Tracking the centroid of a maneuvering target in image sequences
    Zhang, Y.
    Cui, Z.S.
    Long, T.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2001, 22 (04): : 312 - 316
  • [4] Automatic target tracking in FLIR image sequences
    Bal, A
    Alam, MS
    AUTOMATIC TARGET RECOGNITION XIV, 2004, 5426 : 30 - 36
  • [5] Optimal target tracking on image sequences with a deterministic background
    Goudail, F
    Refregier, P
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (12) : 3197 - 3207
  • [6] Feature Tracking for Target Identification in Acoustic Image Sequences
    Gao, Jue
    Gu, Ya
    Zhu, Peiyi
    Complexity, 2021, 2021
  • [7] Feature Tracking for Target Identification in Acoustic Image Sequences
    Gao, Jue
    Gu, Ya
    Zhu, Peiyi
    COMPLEXITY, 2021, 2021
  • [8] Sequential importance sampling filtering for target tracking in image sequences
    Bruno, MGS
    IEEE SIGNAL PROCESSING LETTERS, 2003, 10 (08) : 246 - 249
  • [9] A maximum-likelihood approach to target tracking on image sequences
    Goudail, F
    Refregier, P
    OPTICAL PATTERN RECOGNITION VIII, 1997, 3073 : 33 - 44
  • [10] Target tracking in infrared image sequences using diverse AdaBoostSVM
    Wang, Zhenyu
    Wu, Yi
    Wang, Jinqiao
    Lu, Hanqing
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 2, PROCEEDINGS, 2006, : 233 - +