Bayesian methods for multiaspect target tracking in image sequences

被引:42
作者
Bruno, MGS [1 ]
机构
[1] Inst Tecnol Aeronaut, Div Engn Eletron, BR-12228900 Sao Jose Dos Campos, Brazil
关键词
Bayesian estimation; hidden Markov models; multiaspect target tracking; noricausal Gauss-Markov random fields; particle filters;
D O I
10.1109/TSP.2004.828903
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce new algorithms for automatic tracking of multiaspect targets in cluttered image sequences. We depart from the conventional correlation filter/Kalman filter association approach to target tracking and propose instead a nonlinear Bayesian methodology that enables direct tracking from the image sequence incorporating the statistical models for the background clutter, target motion, and target aspect change. Proposed algorithms include 1) a batch hidden Markov model (HMM) smoother and a sequential HMM filter for joint multiframe target detection and tracking and 2) two mixed-state sequential importance sampling, trackers based on the sampling/importance resampling (SIR) and the auxiliary particle filtering (APF) techniques. Performance studies show that the proposed algorithms outperform the association of a bank of template correlators and a Kalman filter in adverse scenarios of low, target-to-clutter ratio and uncertainty in the true target aspect.
引用
收藏
页码:1848 / 1861
页数:14
相关论文
共 39 条
[1]   Sequential MCMC for Bayesian model selection [J].
Andrieu, C ;
De Freitas, N ;
Doucet, A .
PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, :130-134
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]   NONCAUSAL GAUSS-MARKOV RANDOM-FIELDS - PARAMETER STRUCTURE AND ESTIMATION [J].
BALRAM, N ;
MOURA, JMF .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) :1333-1355
[4]  
Bar-Shalom Y., 1995, MULTITARGET MULTISEN
[6]   STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1554-&
[7]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[8]   Terrain navigation using Bayesian statistics [J].
Bergman, N ;
Ljung, L ;
Gustafsson, F .
IEEE CONTROL SYSTEMS MAGAZINE, 1999, 19 (03) :33-40
[9]   Multiaspect classification of airborne targets via physics-based HMMs and matching pursuits [J].
Bharadwaj, P ;
Runkle, P ;
Carin, L ;
Berrie, JA ;
Hughes, JA .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2001, 37 (02) :595-606
[10]   Target identification with wave-based matched pursuits and hidden Markov models [J].
Bharadwaj, PK ;
Runkle, PR ;
Carin, L .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (10) :1543-1554