Derived Equivalence of Surface Algebras in Genus 0 via Graded Equivalence

被引:4
作者
David-Roesler, Lucas [1 ]
机构
[1] Univ Connecticut, Storrs, CT 06269 USA
关键词
Derived equivalence; Graded equivalence; Triangulated surfaces; Quiver representations; GENTLE ALGEBRAS; QUIVERS; POTENTIALS;
D O I
10.1007/s10468-012-9384-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine some of the derived equivalences of a class of gentle algebras called surface algebras. These algebras are constructed from an unpunctured Riemann surface of genus 0 with boundary and marked points by introducing cuts in internal triangles of an arbitrary triangulation of the surface. In particular, we fix a triangulation of a surface and determine when different cuts produce derived equivalent algebras.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 17 条
[1]  
Amiot C., 2012, ALGEBRAS ACYCLIC CLU
[2]  
Amiot C., 2010, CLUSTER EQUIVALENCE
[3]   CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL DIMENSION 2 AND QUIVERS WITH POTENTIAL [J].
Amiot, Claire .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) :2525-2590
[4]   Cluster automorphisms [J].
Assem, Ibrahim ;
Schiffler, Ralf ;
Shramchenko, Vasilisa .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 :1271-1302
[5]   Gentle algebras arising from surface triangulations [J].
Assem, Ibrahim ;
Brustle, Thomas ;
Charbonneau-Jodoin, Gabrielle ;
Plamondon, Pierre-Guy .
ALGEBRA & NUMBER THEORY, 2010, 4 (02) :201-229
[6]   Combinatorial derived invariants for gentle algebras [J].
Avella-Alaminos, Diana ;
Geiss, Christof .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) :228-243
[7]   From iterated tilted algebras to cluster-tilted algebras [J].
Barot, Michael ;
Fernandez, Elsa ;
Ines Platzeck, Maria ;
Isabel Pratti, Nilda ;
Trepode, Sonia .
ADVANCES IN MATHEMATICS, 2010, 223 (04) :1468-1494
[8]  
Bobinski G., 2010, ALGEBRAS DERIVED EQU
[9]  
Brustle T., 2010, CLUSTER CATEGORY MAR
[10]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618