Blow-up method to compute necessary conditions of integrability for planar differential systems

被引:13
作者
Fercec, Brigita [1 ,2 ]
Gine, Jaume [3 ]
机构
[1] Univ Maribor, Fac Energy Technol, Hocevarjev Trg 1, Krshko 8270, Slovenia
[2] Univ Maribor, Ctr Appl Math & Theoret Phys, Mladinska 3, SI-2000 Maribor, Slovenia
[3] Univ Lleida, Inspires Res Ctr, Dept Matemat, Av Jaume II 69, Lleida 25001, Catalonia, Spain
关键词
Blow-up; Resonant saddle; Saddle constants; Formal first integral; LIENARD SYSTEMS; RESONANT SADDLE;
D O I
10.1016/j.amc.2019.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a method to compute the necessary conditions of integrability for planar differential systems with a weak saddle at the origin. The method is used to characterize the local analytic integrability for resonant saddles of complex systems of the form (x) over dot = px, and (y) over dot = - y + f (y)x, 0 not equal p is an element of N, with f analytic at the origin and with f (0) = 0. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:16 / 24
页数:9
相关论文
共 36 条
[1]   The integrability problem for a class of planar systems [J].
Algaba, A. ;
Gamero, E. ;
Garcia, C. .
NONLINEARITY, 2009, 22 (02) :395-420
[2]   On the Formal Integrability Problem for Planar Differential Systems [J].
Algaba, Antonio ;
Garcia, Cristobal ;
Gine, Jaume .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[3]  
Cherkas L. A., 1976, Di ff er. Equ., V12, P201
[4]  
Cherkas L. A., 1972, Differ. Uravn, V8, P1435
[6]  
Christopher CJ., 1995, Nonlinear World, V2, P459
[7]  
Decker W., 2010, LIB COMPUTING PRIME
[8]   A BLOW-UP METHOD TO PROVE FORMAL INTEGRABILITY FOR SOME PLANAR DIFFERENTIAL SYSTEMS [J].
Fercec, Brigita ;
Gine, Jaume .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (06) :1833-1850
[9]   Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities [J].
Fercec, Brigita ;
Gine, Jaume ;
Liu, Yirong ;
Romanovski, Valery G. .
ACTA APPLICANDAE MATHEMATICAE, 2013, 124 (01) :107-122
[10]   On non-integrability of general systems of differential equations [J].
Furta, SD .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (01) :112-131