A new proof of the existence of homoclinic orbits for a class of autonomous second order Hamiltonian systems in IRN

被引:7
作者
Caldiroli, P
机构
[1] Sc. Internationale Superiore S., 34013 Trieste, Via Beirut
关键词
mountain pass lemma; Hamiltonian systems; homoclinic orbits;
D O I
10.1002/mana.19971870103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Hamiltonian system in R-N given by (u) double overdot + V'(u) = 0 where V : R-N --> R is a smooth potential having a non degenerate local maximum at 0 and we assume that there is an open bounded neighborhood Omega of 0 such that V(x) < V(0) for x is an element of Omega\{0}, V(x) = V(0) and V'(x) not equal 0 for x is an element of partial derivative Omega. Using a refined version of the mountain pass lemma [4], we give a further proof of the existence of a solution of u + V'(u) = 0, homoclinic to 0.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 5 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] AMBROSETTI A, 1992, HOMOCLINICS 2 ORDER
  • [3] A GENERAL MOUNTAIN PASS PRINCIPLE FOR LOCATING AND CLASSIFYING CRITICAL-POINTS
    GHOUSSOUB, N
    PREISS, D
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (05): : 321 - 330
  • [4] SOME RESULTS ON CONNECTING ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS
    RABINOWITZ, PH
    TANAKA, K
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (03) : 473 - 499
  • [5] Zelati VC., 1991, J AM MATH SOC, V4, P693