Clinically significant prostate cancer detection on MRI: A radiomic shape features study

被引:83
作者
Cuocolo, Renato [1 ]
Stanzione, Arnaldo [1 ]
Ponsiglione, Andrea [1 ]
Romeo, Valeria [1 ]
Verde, Francesco [1 ]
Creta, Massimiliano [2 ]
La Rocca, Roberto [2 ]
Longo, Nicola [2 ]
Pace, Leonardo [3 ]
Imbriaco, Massimo [1 ]
机构
[1] Univ Naples Federico II, Dept Adv Biomed Sci, Via S Pansini 5, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Neurosci Reprod Sci & Odontostomatol, Naples, Italy
[3] Univ Salerno, Dept Med & Surg, Salerno, Italy
关键词
MRI; Radiomcs; Shape; Prostate cancer; Gleason score; TEXTURE ANALYSIS; AGGRESSIVENESS ASSESSMENT; BIOPSY; IMAGES; GUIDELINES; DIAGNOSIS;
D O I
10.1016/j.ejrad.2019.05.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Prostate multiparametric MRI (mpMRI) is the imaging modality of choice for detecting clinically significant prostate cancer (csPCa). Among various parameters, lesion maximum diameter and volume are currently considered of value to increase diagnostic accuracy. Quantitative radiomics allows for the extraction of more advanced shape features. Our aim was to assess which shape features derived from MRI index lesions correlate with csPCa presence. Materials and Methods: We retrospectively enrolled 75 consecutive subjects, who underwent mpMRI on a 3 T scanner, divided based on MRI index lesion Gleason Score in a csPCa group (GS > 3 + 4, n = 41) and a noncsPCa one (n = 34). Ten shape features were extracted both from axial T2-weighted and ADC maps images, after lesion tridimensional segmentation. Univariable and multivariable logistic analysis were used to evaluate the relationship between shape features and csPCa. Diagnostic performance was assessed measuring the area under the curve of the receiver operating characteristic (ROC) analysis. Diagnostic accuracy, sensitivity, and specificity were determined using the best cut-off on each ROC. A P value < 0.05 was considered statistically significant. Results: Univariable analysis demonstrated that almost every shape feature was statistically significant between csPCa e non-csPCa groups. However, multivariable analysis revealed that the parameter defined as surface area to volume ratio (SAVR), especially when extracted from ADC maps is the strongest independent predictor of csPCa among tested shape features. Conclusion: The radiomic shape feature SAVR, extracted from ADC maps after index lesion segmentation, appears as a promising tool for csPCa detection.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 43 条
[1]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[2]   Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use [J].
Barentsz, Jelle O. ;
Weinreb, Jeffrey C. ;
Verma, Sadhna ;
Thoeny, Harriet C. ;
Tempany, Clare M. ;
Shtern, Faina ;
Padhani, Anwar R. ;
Margolis, Daniel ;
Macura, Katarzyna J. ;
Haider, Masoom A. ;
Cornud, Francois ;
Choyke, Peter L. .
EUROPEAN UROLOGY, 2016, 69 (01) :41-49
[3]   Prevalence of incidental prostate cancer: A systematic review of autopsy studies [J].
Bell, Katy J. L. ;
Del Mar, Chris ;
Wright, Gordon ;
Dickinson, James ;
Glasziou, Paul .
INTERNATIONAL JOURNAL OF CANCER, 2015, 137 (07) :1749-1757
[4]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[5]   Presentation of Benefits and Harms in US Cancer Screening and Prevention Guidelines: Systematic Review [J].
Caverly, Tanner J. ;
Hayward, Rodney A. ;
Reamer, Elyse ;
Zikmund-Fisher, Brian J. ;
Connochie, Daniel ;
Heisler, Michele ;
Fagerlin, Angela .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2016, 108 (06)
[6]   Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics [J].
Chatterjee, Aritrick ;
Watson, Geoffrey ;
Myint, Esther ;
Sved, Paul ;
McEntee, Mark ;
Bourne, Roger .
RADIOLOGY, 2015, 277 (03) :751-762
[7]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[8]   PSA-density does not improve bi-parametric prostate MR detection of prostate cancer in a biopsy naive patient population [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Rusconi, Giovanni ;
Petretta, Mario ;
Ponsiglione, Andrea ;
Fusco, Ferdinando ;
Longo, Nicola ;
Persico, Francesco ;
Cocozza, Sirio ;
Brunetti, Arturo ;
Imbriaco, Massimo .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 104 :64-70
[9]   Prostate Cancer Aggressiveness: Assessment with Whole-Lesion Histogram Analysis of the Apparent Diffusion Coefficient [J].
Donati, Olivio F. ;
Mazaheri, Yousef ;
Afaq, Asim ;
Vargas, Hebert A. ;
Zheng, Junting ;
Moskowitz, Chaya S. ;
Hricak, Hedvig ;
Akin, Oguz .
RADIOLOGY, 2014, 271 (01) :143-152
[10]   Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images [J].
Fehr, Duc ;
Veeraraghavan, Harini ;
Wibmer, Andreas ;
Gondo, Tatsuo ;
Matsumoto, Kazuhiro ;
Vargas, Herbert Alberto ;
Sala, Evis ;
Hricak, Hedvig ;
Deasy, Joseph O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (46) :E6265-E6273