Mn(OH)2-coated Ni3S2 nanosheets on Ni foam as a cathode for high-performance aqueous asymmetric supercapacitors

被引:24
作者
Song, Xiaoqiang [1 ,2 ,3 ]
Emin, Adil [1 ,2 ]
Chen, Yue [1 ,2 ]
Yang, Mingzhe [1 ,2 ]
Zou, Situo [1 ,2 ]
Du, Yihe [1 ,2 ]
Fu, Yujun [1 ,2 ]
Li, Yali [1 ,2 ]
Li, Yingtao [3 ]
Li, Junshuai [1 ,2 ]
He, Deyan [1 ,2 ]
机构
[1] Lanzhou Univ, LONGi Inst Future Technol, 222 South Tianshui Rd, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Sch Mat & Energy, 222 South Tianshui Rd, Lanzhou 730000, Peoples R China
[3] Lanzhou Univ, Sch Phys Sci & Technol, 222 South Tianshui Rd, Lanzhou 730000, Peoples R China
关键词
Aqueous asymmetric supercapacitors; High performance; Transition metal sulfide; Transition metal hydroxide; Electrodes; HIGH-ENERGY-DENSITY; NICKEL FOAM; ELECTRODE; NANOSTRUCTURES; NANOWIRES; BEHAVIOR; ARRAYS;
D O I
10.1016/j.est.2022.104513
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, we report a high-performance self-standing electrode of Mn(OH)(2)-coated Ni3S2 (Ni3S2@Mn(OH)(2)) nanosheets on Ni foam by hydrothermally growing the Ni3S2 nanosheets and electrodepositing Mn(OH)(2) around Ni3S2. The structure of the Ni3S2 nanosheets grown by the hydrothermal method is more stable, and the electrodeposition method is easier to synthesize Mn(OH)(2) without using any binder. The electrochemical characterization demonstrates that combining the Ni3S2 nanosheet with the Mn(OH)(2) coating is an effective way to improving the charge storage performance because of the synergetic effects of both materials/structures. The electrode possesses a high area-specific capacitance of 6430.2 mF cm(-2) at 1 mA cm(-2) and good cycle stability with similar to 80.9% capacitance retention after 9000 cycles at 8 mA cm(-2). The aqueous asymmetric supercapacitors assembled with the Ni3S2@Mn(OH)(2) cathode, the activated carbon anode and 1 M KOH electrolyte delivers an energy density of 0.371 mWh cm(-2) at 0.799 mW cm(-2), as well as good cycle stability with similar to 86.3% capacity retention after 10,000 cycles at 20 mA cm(-2). Given the high performance and relatively simple preparation, this work provides a valuable exploration of developing high-performance cathodes for aqueous supercapacitors.
引用
收藏
页数:8
相关论文
共 64 条
[1]   High-performance aqueous asymmetric supercapacitors based on the cathode of one-step electrodeposited cracked bark-shaped nickel manganese sulfides on activated carbon cloth [J].
Adil, Emin ;
Xie WenLu ;
Long Xiao ;
Wang Xiao ;
Song XiaoQiang ;
Chen Yue ;
Fu YuJun ;
Li JunShuai ;
Li YaLi ;
He DeYan .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (02) :293-301
[2]   Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors [J].
Bandyopadhyay, Parthasarathi ;
Saeed, Ghuzanfar ;
Kim, Nam Hoon ;
Lee, Joong Hee .
CHEMICAL ENGINEERING JOURNAL, 2020, 384
[3]   Hierarchical core-shell structured CoNi2S4/Ni3S2@Ni(OH)2 nanosheet arrays as electrode for electrochemical energy storage [J].
Chen, Fangshuai ;
Wang, Hui ;
Ji, Shan ;
Pollet, Bruno G. ;
Wang, Rongfang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 785 :684-691
[4]   Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life [J].
Chen, Lina ;
Chen, Long ;
Zhai, Wei ;
Li, Deping ;
Lin, Yunxiang ;
Guo, Shirui ;
Feng, Jinkui ;
Zhang, Lin ;
Song, Li ;
Si, Pengchao ;
Ci, Lijie .
JOURNAL OF POWER SOURCES, 2019, 413 :302-309
[5]   Carbon nanotubes@Ni3V2O8@NiCo2S4 nanosheets on Ni foam as a cathode for high-performance aqueous supercapacitors [J].
Chen, Yue ;
Long, Xiao ;
Zou, Situo ;
Yang, Mingzhe ;
Du, Yihe ;
Song, Xiaoqiang ;
Fu, Yujun ;
Li, Junshuai ;
Li, Yali ;
He, Deyan .
JOURNAL OF ENERGY STORAGE, 2021, 44
[6]   Hierarchical CoS@MoS2 core-shell nanowire arrays as free-standing electrodes for high-performance asymmetric supercapacitors [J].
Dai, JiuYi ;
Balamurugan, Jayaraman ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 825
[7]   Core-shell structured Ni3S2@VO2 nanorods grown on nickel foam as battery-type materials for supercapacitors [J].
Du, Hongmei ;
Ding, Feifei ;
Zhao, Jinsheng ;
Zhang, Xianxi ;
Li, Yunwu ;
Zhang, Yan ;
Li, Jin ;
Yang, Xiaofan ;
Li, Kun ;
Yang, Yaqing .
APPLIED SURFACE SCIENCE, 2020, 508
[8]   Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor [J].
Gao, Zhiyong ;
Chen, Chen ;
Chang, Jiuli ;
Chen, Liming ;
Wang, Panyue ;
Wu, Dapeng ;
Xu, Fang ;
Jiang, Kai .
CHEMICAL ENGINEERING JOURNAL, 2018, 343 :572-582
[9]   Energy storage on demand: ultra-high-rate and high-energy-density inkjet-printed NiO micro-supercapacitors [J].
Giannakou, Pavlos ;
Masteghin, Mateus G. ;
Slade, Robert C. T. ;
Hinder, Steven J. ;
Shkunov, Maxim .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (37) :21496-21506
[10]   NiMoO4 nanosheets grown on MOF-derived leaf-like Co3O4 nanosheet arrays for high-performance supercapacitors [J].
Hu, Qiang ;
Kang, Chenxia ;
Cao, Shiyue ;
Zhou, Chengbao ;
Liu, Qiming .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 883