CRISPR/Cas9 advances engineering of microbial cell factories

被引:148
|
作者
Jakociunas, Tadas [1 ]
Jensen, Michael K. [1 ]
Keasling, Jay D. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Lyngby, Denmark
[2] Joint BioEnergy Inst, Emeryville, CA USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
关键词
Genome editing; Metabolic engineering; CRISPR/Cas9; Recombineering; Yeast; Bacteria; DOUBLE-STRAND BREAKS; HETEROLOGOUS GENE-EXPRESSION; ESCHERICHIA-COLI GENOME; SPENT SULFITE LIQUOR; SACCHAROMYCES-CEREVISIAE; HOMOLOGOUS RECOMBINATION; HIGH-THROUGHPUT; IN-VIVO; CHROMOSOMAL INTEGRATION; PLASMID CONSTRUCTION;
D O I
10.1016/j.ymben.2015.12.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:44 / 59
页数:16
相关论文
共 50 条
  • [1] Advances in CRISPR/Cas9
    Zhu, Youmin
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [2] Application of CRISPR-Cas9 in microbial cell factories
    Jinhui Yang
    Junyan Song
    Zeyu Feng
    Yunqi Ma
    Biotechnology Letters, 2025, 47 (3)
  • [3] CRISPR/Cas9 Systems for the Development of Saccharomyces cerevisiae Cell Factories
    Meng, Jie
    Qiu, Yue
    Shi, Shuobo
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [4] Chromosome engineering in zygotes with CRISPR/Cas9
    Boroviak, Katharina
    Doe, Brendan
    Banerjee, Ruby
    Yang, Fengtang
    Bradley, Allan
    GENESIS, 2016, 54 (02) : 78 - 85
  • [5] Improving the efficiency of Cas9/CRISPR genome engineering by optimizing Cas9 delivery
    Pelczar, Pawel
    Oller, Heide
    Kornete, Mara
    Schreiner, Dietmar
    Hermann, Mario
    Jeker, Lukas
    TRANSGENIC RESEARCH, 2016, 25 (02) : 255 - 256
  • [6] Recent Advances in CRISPR/Cas9 Delivery Strategies
    Yip, Bon Ham
    BIOMOLECULES, 2020, 10 (06)
  • [7] Advances in therapeutic CRISPR/Cas9 genome editing
    Schwank, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1053 - 1053
  • [8] Advances in CRISPR/Cas9 Technology for in Vivo Translation
    Cicek, Yagiz Anil
    Luther, David C.
    Kretzmann, Jessica A.
    Rotello, Vincent M.
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2019, 42 (03) : 304 - 311
  • [9] Advances in Optical Regulation of the CRISPR/Cas9 System
    Xue, Yuwen
    Li, Lei
    Li, Meixing
    Shen, Qingming
    ACTA CHIMICA SINICA, 2024, 82 (11) : 1180 - 1192
  • [10] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21