The duality principle and the uniqueness problem for some classes of parabolic equations with unknown coefficients

被引:0
作者
Gol'dman, N. L. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Ctr Res Comp, Moscow 119991, Russia
关键词
Inverse Problem; Parabolic Equation; Function Class; Dual Problem; Uniqueness Condition;
D O I
10.1134/S1064562409040358
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The conditions under which solutions to inverse problems in certain classes of smooth functions are unique with unknown coefficients and duality principles are presented. The inverse problems with final observation for linear and quasilinear parabolic equations with unknown coefficients multiplying lower-order terms or derivatives are studied. A characteristic feature of these problems is the possible nonexistence of solutions and the instability of solutions with respect to errors in input data. This approach ensures the possibility of taking into account the dependence of all coefficients of a parabolic equation on a variable in linear case and in quasilinear case. The density properties of the dual problem ensure the uniqueness of a solution of the initial inverse problem. All results presented can be generalized to boundary conditions of the third kind and to the multidimensional case.
引用
收藏
页码:590 / 594
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1969, QUELQUES METHODES RE
[2]   Global uniqueness and Holder stability for recovering a nonlinear source term in a parabolic equation [J].
Egger, H ;
Engl, HW ;
Klibanov, MV .
INVERSE PROBLEMS, 2005, 21 (01) :271-290
[3]  
Friedman A., 1983, Partial Differential Equations
[4]  
[Гольдман Н.Л. Gol'dman N.L.], 2009, [Вычислительные методы и программирование: новые вычислительные технологии, Vychislitel'nye metody i programmirovanie: novye vychislitel'nye tekhnologii], V10, P176
[5]  
GOLDMAN NL, 2008, DOKL AKAD NAUK+, V420, P151
[6]  
KLIBANOV MV, 1985, DOKL AKAD NAUK SSSR+, V280, P533
[7]  
[Кожанов A.И. Kozhanov A.I.], 2006, [Доклады Академии наук, Doklady Akademii nauk], V409, P740
[8]  
Ladyzhenskaya O. A., 1967, LINEAR QUASILINEAR E
[9]  
LATTES R, 1970, METHODE QUASIREVERSI
[10]   UNIQUE CONTINUATION FOR PARABOLIC DIFFERENTIAL EQUATIONS AND INEQUALITIES [J].
LEES, M ;
PROTTER, MH .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :369-&