New pyrazolopyrimidine derivatives as Leishmania amazonensis arginase inhibitors

被引:16
作者
Feitosa, Livia M. [1 ,2 ]
da Silva, Edson R. [3 ]
Hoelz, Lucas V. B. [1 ]
Souza, Danielle L. [1 ]
Come, Julio A. A. S. S. [4 ]
Cardoso-Santos, Camila [5 ]
Batista, Marcos M. [5 ]
Soeiro, Maria de Nazare C. [5 ]
Boechat, Nubia [1 ]
Pinheiro, Luiz C. S. [1 ]
机构
[1] Fundacao Oswaldo Cruz, Farmanguinhos FIOCRUZ, Inst Tecnol Farmacos, Dept Sintese Farmacos, Rua Sizenando Nabuco 100, BR-21041250 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, PGQu Inst Quim, Programa Posgrad Quim, Rio De Janeiro, RJ, Brazil
[3] Univ Sao Paulo, Dept Vet Med, Fac Zootecnia & Engn Alimentos, Pirassununga, SP, Brazil
[4] Univ Sao Paulo, Programa Posgrad Biociencia Anim, Fac Zootecnia & Engn Alimentos, Pirassununga, SP, Brazil
[5] Fundacao Oswaldo Cruz, FIOCRUZ, Lab Biol Celular, Inst Oswaldo Cruz, Ave Brasil 4365, Rio De Janeiro, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Leishmania amazonensis; Pyrazolopyrimidine; Arginase; Trypanothione; Polyamines; TRANSITION-STATE ANALOG; FALCIPARUM ACTIVITY; TRYPANOSOMA-CRUZI; NITRIC-OXIDE; TRYPANOTHIONE; DESIGN; MODELS;
D O I
10.1016/j.bmc.2019.05.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arginase performs the first enzymatic step in polyamine biosynthesis in Leishmania and represents a promising target for drug development. Polyamines in Leishmania are involved in trypanothione synthesis, which neutralize the oxidative burst of reactive oxygen species (ROS) and nitric oxide (NO) that are produced by host macrophages to kill the parasite. In an attempt to synthesize arginase inhibitors, six 1-phenyl-1H-pyrazolo[ 3,4-d] pyrimidine derivatives with different substituents at the 4-position of the phenyl group were synthesized. All compounds were initially tested at 100 mu M concentration against Leishmania amazonensis ARG (LaARG), showing inhibitory activity ranging from 36 to 74%. Two compounds, 1 (R=H) and 6 (R=CF3), showed arginase inhibition > 70% and IC50 values of 12 mu M and 47 mu M, respectively. Thus, the kinetics of LaARG inhibition were analyzed for compounds 1 and 6 and revealed that these compounds inhibit the enzyme by an uncompetitive mechanism, showing K-is values, and dissociation constants for ternary complex enzyme-substrate-inhibitor, of 8.5 +/- 0.9 mu M and 29 +/- 5 mu M, respectively. Additionally, the molecular docking studies proposed that these two uncompetitive inhibitors interact with different LaARG binding sites, where compound 1 forms more H-bond interactions with the enzyme than compound 6. These compounds showed low activity against L. amazonensis free amastigotes obtained from mice lesions when assayed with as much as 30 mu M. The maximum growth inhibition reached was between 20 and 30% after 48 h of incubation. These results suggest that this system can be promising for the design of potential antileishmanial compounds.
引用
收藏
页码:3061 / 3069
页数:9
相关论文
共 35 条
[1]  
Aronson N, 2016, CLIN INFECT DIS, V63, P1539, DOI [10.1093/cid/ciw742, 10.4269/ajtmh.16-84256]
[2]  
Ash DE, 2004, J NUTR, V134, p2760S, DOI 10.1093/jn/134.10.2760S
[3]   Inhibition of Mn-2(2+)-arginase by borate leads to the design of a transition state analogue inhibitor, 2(S)-amino-6-boronohexanoic acid [J].
Baggio, R ;
Elbaum, D ;
Kanyo, ZF ;
Carroll, PJ ;
Cavalli, RC ;
Ash, DE ;
Christianson, DW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (34) :8107-8108
[4]   Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites [J].
Bocedi, Alessio ;
Dawood, Kutayba F. ;
Fabrini, Raffaele ;
Federici, Giorgio ;
Gradoni, Luigi ;
Pedersen, Jens Z. ;
Ricci, Giorgio .
FASEB JOURNAL, 2010, 24 (04) :1035-1042
[5]  
Boechat N, 2014, ORGANIC COMPOUNDS CO, P63
[6]  
Boechat N, 2013, MICROBIOL ANTIMICROB, V5, P72
[7]   New Trifluoromethyl Triazolopyrimidines as Anti-Plasmodium falciparum Agents [J].
Boechat, Nubia ;
Pinheiro, Luiz C. S. ;
Silva, Thiago S. ;
Aguiar, Anna C. C. ;
Carvalho, Alcione S. ;
Bastos, Monica M. ;
Costa, Carolina C. P. ;
Pinheiro, Sergio ;
Pinto, Angelo C. ;
Mendonca, Jorge S. ;
Dutra, Karen D. B. ;
Valverde, Alessandra L. ;
Santos-Filho, Osvaldo A. ;
Ceravolo, Isabela P. ;
Krettli, Antoniana U. .
MOLECULES, 2012, 17 (07) :8285-8302
[8]   Arginase: an old enzyme with new tricks [J].
Caldwell, Ruth B. ;
Toque, Harold A. ;
Narayanan, S. Priya ;
Caldwell, R. William .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2015, 36 (06) :395-405
[9]   Inhibitor coordination interactions in the binuclear manganese cluster of arginase [J].
Cama, E ;
Pethe, S ;
Boucher, JL ;
Han, SF ;
Emig, FA ;
Ash, DE ;
Viola, RE ;
Mansuy, D ;
Christianson, DW .
BIOCHEMISTRY, 2004, 43 (28) :8987-8999
[10]   SIMPLE GRAPHICAL METHOD FOR DETERMINING INHIBITION CONSTANTS OF MIXED, UNCOMPETITIVE AND NON-COMPETITIVE INHIBITORS [J].
CORNISHB.A .
BIOCHEMICAL JOURNAL, 1974, 137 (01) :143-144