Quantum action-angle variables for the harmonic oscillator

被引:19
作者
Lewis, HR
Lawrence, WE
Harris, JD
机构
[1] Dartmouth College, Department of Physics and Astronomy, Hanover, NH
关键词
D O I
10.1103/PhysRevLett.77.5157
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operators conjugate to the Hamiltonian are constructed explicitly for the quantum harmonic oscillator by two approaches in the space spanned by the eigenstates of q and the eigenstates of p. The operators are quantum analogs of new perturbative procedure for constructing invariant operators for nonlinear, nonautonomous Hamiltonians.
引用
收藏
页码:5157 / 5159
页数:3
相关论文
共 9 条
[1]   TIME IN QUANTUM THEORY AND UNCERTAINTY RELATION FOR TIME AND ENERGY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1961, 122 (05) :1649-&
[2]   FORMALLY EXACT SOLUTION AND GEOMETRIC PHASE FOR THE SPIN-J SYSTEM [J].
GAO, XC ;
XU, JB ;
QIAN, TZ .
PHYSICS LETTERS A, 1991, 152 (09) :449-452
[3]   THE DISPERSION FUNCTIONAL FOR MULTIDIMENSIONAL EQUILIBRIA [J].
LEWIS, HR ;
BARNES, DC ;
SCHWARZMEIER, JL ;
SEYLER, CE .
PHYSICS OF FLUIDS, 1985, 28 (12) :3546-3556
[4]   Time-dependent perturbation theory for the construction of invariants of Hamiltonian systems [J].
Lewis, HR ;
Bates, JW ;
Finn, JM .
PHYSICS LETTERS A, 1996, 215 (3-4) :160-166
[5]   AN EXACT QUANTUM THEORY OF TIME-DEPENDENT HARMONIC OSCILLATOR AND OF A CHARGED PARTICLE IN A TIME-DEPENDENT ELECTROMAGNETIC FIELD [J].
LEWIS, HR ;
RIESENFELD, WB .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) :1458-+
[6]  
LEWIS HR, IN PRESS QUANTUM TIM
[7]   CANONICAL-TRANSFORMATIONS TO ACTION AND PHASE-ANGLE VARIABLES AND PHASE OPERATORS [J].
LUIS, A ;
SANCHEZSOTO, LL .
PHYSICAL REVIEW A, 1993, 48 (01) :752-757
[8]  
Lynch R., 1995, Physics Reports, V256, P367, DOI 10.1016/0370-1573(94)00095-K
[9]  
Susskind L, 1964, PHYSICS LONG ISLAND, V1, P49, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.49