Inverse limits of Markov interval maps

被引:12
作者
Holte, SE [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
关键词
inverse limit space; Markov map; kneading sequence; attractor;
D O I
10.1016/S0166-8641(01)00209-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inverse limit spaces of one-dimensional continua frequently appear as attractors in dissipative dynamical systems. As such, there has been considerable interest in the topology of these inverse limit spaces. In this work we describe the topology of Markov interval maps, and use our results to show that for unimodal interval maps with finite kneading sequences, the kneading sequence and dynamics of the left endpoint determine the topology of the associated inverse limit space. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:421 / 427
页数:7
相关论文
共 17 条
[1]  
BARGE M, 1995, FUND MATH, V146, P171
[2]   Inverse limit spaces of infinitely renormalizable maps [J].
Barge, M ;
Diamond, B .
TOPOLOGY AND ITS APPLICATIONS, 1998, 83 (02) :103-108
[3]   Self-similarity in inverse limit spaces of the tent family [J].
Barge, M ;
Brucks, K ;
Diamond, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (11) :3563-3570
[4]   NEARLY ONE-DIMENSIONAL HENON ATTRACTORS AND INVERSE LIMITS [J].
BARGE, M ;
HOLTE, S .
NONLINEARITY, 1995, 8 (01) :29-42
[5]   HORSESHOE MAPS AND INVERSE LIMITS [J].
BARGE, M .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 121 (01) :29-39
[6]  
BLOCK L, 1979, T AM MATH SOC, V214, P403
[7]  
Brown M., 1960, P AM MATH SOC, V11, P478
[8]  
COLLET P, 1980, ITERATED MAPS INTERV
[9]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[10]  
Holte S., 1994, Journal of Dynamics and Differential Equations, V6, P601, DOI 10.1007/BF02218849