Topology optimization of vibrating structures with frequency band constraints

被引:46
作者
Li, Quhao [1 ,2 ]
Wu, Qiangbo [1 ]
Liu, Ji [3 ]
He, Jingjie [2 ]
Liu, Shutian [2 ]
机构
[1] Shandong Univ, Sch Mech Engn, Key Lab High Efficiency & Clean Mech Manufacture, Jinan 250061, Peoples R China
[2] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
[3] China Acad Engn Phys, Inst Syst Engn, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Topology optimization; Eigenvalue optimization; Frequency band constraint; Heaviside function; LEVEL-SET; MULTIPLE-EIGENVALUES; CONTINUUM STRUCTURES; SHAPE OPTIMIZATION; DESIGN; EIGENFREQUENCIES; MAXIMIZATION;
D O I
10.1007/s00158-020-02753-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Engineering structures usually operate in some specific frequency bands. An effective way to avoid resonance is to shift the structure's natural frequencies out of these frequency bands. However, in the optimization procedure, which frequency orders will fall into these bands are not known a priori. This makes it difficult to use the existing frequency constraint formulations, which require prescribed orders. For solving this issue, a novel formulation of the frequency band constraint based on a modified Heaviside function is proposed in this paper. The new formulation is continuous and differentiable; thus, the sensitivity of the constraint function can be derived and used in a gradient-based optimization method. Topology optimization for maximizing the structural fundamental frequency while circumventing the natural frequencies located in the working frequency bands is studied. For eliminating the frequently happened numerical problems in the natural frequency topology optimization process, including mode switching, checkerboard phenomena, and gray elements, the "bound formulation" and "robust formulation" are applied. Three numerical examples, including 2D and 3D problems, are solved by the proposed method. Frequency band gaps of the optimized results are obtained by considering the frequency band constraints, which validates the effectiveness of the developed method.
引用
收藏
页码:1203 / 1218
页数:16
相关论文
共 50 条
[1]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[2]   A VARIATIONAL FORMULATION FOR MULTICRITERIA STRUCTURAL OPTIMIZATION [J].
BENDSOE, MP ;
OLHOFF, N ;
TAYLOR, JE .
JOURNAL OF STRUCTURAL MECHANICS, 1983, 11 (04) :523-544
[3]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[4]   Material interpolation schemes in topology optimization [J].
Bendsoe, MP ;
Sigmund, O .
ARCHIVE OF APPLIED MECHANICS, 1999, 69 (9-10) :635-654
[5]  
Bendsoe MP., 1989, STRUCTURAL OPTIMIZAT, V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
[6]  
DIAZ AR, 1992, INT J NUMER METH ENG, V35, P1487
[7]   Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps [J].
Du, Jianbin ;
Olhoff, Niels .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2007, 34 (02) :91-110
[8]   Doing Topology Optimization Explicitly and Geometrically-A New Moving Morphable Components Based Framework [J].
Guo, Xu ;
Zhang, Weisheng ;
Zhong, Wenliang .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2014, 81 (08)
[9]   On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases [J].
Jensen, JS ;
Pedersen, NL .
JOURNAL OF SOUND AND VIBRATION, 2006, 289 (4-5) :967-986
[10]   A method using successive iteration of analysis and design for large-scale topology optimization considering eigenfrequencies [J].
Kang, Zhan ;
He, Jingjie ;
Shi, Lin ;
Miao, Zhaohui .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 362