Multi-Scale CNN based on Attention Mechanism for Rolling Bearing Fault Diagnosis

被引:0
|
作者
Hao, Yijia [1 ]
Wang, Huan [2 ]
Liu, Zhiliang [2 ]
Han, Haoran [1 ]
机构
[1] Univ Elect Sci & Technol China, Glasgow Coll, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
来源
2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM) | 2020年
关键词
Intelligent fault diagnosis; Convolutional neural network; Multi-scale learning; Attention mechanism; CONVOLUTIONAL NEURAL-NETWORK;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent years, deep learning has shown great vitality in the field of intelligent fault diagnosis. However, most diagnostic models are not yet capable enough to capture the rich multi-scale features in raw vibration signals. Therefore, a multi-scale, attention-mechanism based, convolutional neural network (MSAM-CNN), is proposed to automatically diagnose health states of rolling bearings. The network is one-dimensional, and the information of the original vibration signal on different scales is processed by a parallel multi-branch structure. Then the learned complementary features from different branches are fused. Meanwhile, the attention mechanism can automatically select the optimal features. The MSAM-CNN is evaluated on the bearing dataset that is provided by Case Western Reserve University (CWRU). Experimental results indicate that the proposed network can greatly improve the fault recognition ability of the convolutional neural network, and the MSAM-CNN is superior to four forefront deep learning fault diagnosis networks under strong noise interference.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Bearing Fault Diagnosis Based on Attentional Multi-scale CNN
    Yang, Shuai
    Liu, Yan
    Tian, Xincheng
    Ma, Lixin
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2021, PT III, 2021, 13015 : 25 - 36
  • [2] An Improved Fault Diagnosis Method of Rolling Bearings Based on Multi-Scale Attention CNN
    Deng, Linfeng
    Zhang, Yuanwen
    Shi, Zhifeng
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, 24 (04) : 1814 - 1827
  • [3] Bearing Fault Diagnosis Based on Multi-Scale CNN and Bidirectional GRU
    Saghi, Taher
    Bustan, Danyal
    Aphale, Sumeet S.
    VIBRATION, 2023, 6 (01): : 11 - 28
  • [4] Attention mechanism based multi-scale feature extraction of bearing fault diagnosis
    Lei, Xue
    Lu, Ningyun
    Chen, Chuang
    Hu, Tianzhen
    Jiang, Bin
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2023, 34 (05) : 1359 - 1367
  • [5] Fault diagnosis method of rolling bearing based on attention mechanism
    Mao J.
    Guo Y.
    Zhao M.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (07): : 2233 - 2244
  • [6] Bearing fault diagnosis base on multi-scale CNN and LSTM model
    Chen, Xiaohan
    Zhang, Beike
    Gao, Dong
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (04) : 971 - 987
  • [7] Bearing fault diagnosis base on multi-scale CNN and LSTM model
    Xiaohan Chen
    Beike Zhang
    Dong Gao
    Journal of Intelligent Manufacturing, 2021, 32 : 971 - 987
  • [8] A Novel Rolling Bearing Fault Diagnosis Method Based on BLS and CNN with Attention Mechanism
    Wang, Xiaojia
    Hua, Tong
    Xu, Sheng
    Zhao, Xibin
    MACHINES, 2023, 11 (02)
  • [9] Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network
    Shen, Qimin
    Zhang, Zengqiang
    IEEE ACCESS, 2024, 12 : 12940 - 12952
  • [10] Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network
    Guo, Yurong
    Mao, Jian
    Zhao, Man
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3377 - 3410