Robust fractional Active Disturbance Rejection Control: A unified approach

被引:9
作者
Cortes-Romero, John [1 ]
Delgado-Aguilera, Efredy [1 ]
Jimenez-Triana, Alexander [2 ]
机构
[1] Univ Nacl Colombia, Fac Ingn, Dept Ingn Elect & Elect, Av K30 45-03 Edif 453 Of 222, Bogota, Colombia
[2] Univ Dist Francisco Jose de Caldas, Dept Control Engn, Cll 74 68A-20, Bogota, Colombia
关键词
Robust fractional order control; ADRC; Ultimate bound analysis; Analog realization; Fractional extended-state observer;
D O I
10.1016/j.isatra.2020.08.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an adaptation of the Active Disturbance Rejection Control (ADRC) method within the fractional calculus context. This ADRC version is characterized by a single active cancellation of the lumped effects of all the unmodeled dynamics, external disturbances and parameter uncertainty associated with the linear model of commensurate fractional order. This methodology proposes suitable simplifications to fit the resulting system to one of appropriate commensurate fractional order. The design is reduced to a linear observer-based control of fractional order that estimates the unified disturbance. A numerical stability analysis is presented to quantify the tracking and estimate errors bounds and provide guidelines in the parameters of observer-based controller configuration. The proposed control strategy is experimentally validated in linear and nonlinear cases of fractional order by means of approximate analog implementations. (C) 2020 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 77
页数:15
相关论文
共 43 条
[1]  
[Anonymous], 2011, ASME 2011 INT DES EN, DOI DOI 10.1115/DETC2011
[2]   Stability and Stabilization of Fractional-Order Systems with Different Derivative Orders: An LMI Approach [J].
Badri, Pouya ;
Sojoodi, Mandi .
ASIAN JOURNAL OF CONTROL, 2019, 21 (05) :2270-2279
[3]   Robust Output Feedback Disturbance Rejection Control by Simultaneously Estimating State and Disturbance [J].
Chang, Jeang-Lin .
JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2011, 2011
[4]  
Chatterjee, J COMPUT NONLIN DYN, V8
[5]   Fractional Order Control - A Tutorial [J].
Chen, YangQuan ;
Petras, Ivo ;
Xue, Dingyue .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :1397-+
[6]  
Cheng DH, 2010, ANALYSIS AND DESIGN OF NONLINEAR CONTROL SYSTEMS, P1
[7]  
Dive R, 2012, INT C DEV CIRC SYST, P550
[8]   Analogue Realization of Fractional-Order Dynamical Systems [J].
Dorcak, Lubomir ;
Valsa, Juraj ;
Gonzalez, Emmanuel ;
Terpak, Jan ;
Petras, Ivo ;
Pivka, Ladislav .
ENTROPY, 2013, 15 (10) :4199-4214
[9]   Fractional Order Controllers versus Integer Order Controllers [J].
Dulau, Mircea ;
Gligor, Adrian ;
Dulau, Tudor-Mircea .
10TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING, INTER-ENG 2016, 2017, 181 :538-545
[10]   On Fractional-order PID Controllers [J].
Edet, Emmanuel ;
Katebi, Reza .
IFAC PAPERSONLINE, 2018, 51 (04) :739-744