Knowledge-Aided Parametric Adaptive Matched Filter With Automatic Combining for Covariance Estimation

被引:28
作者
Wang, Pu [1 ]
Wang, Zhe [2 ]
Li, Hongbin [2 ]
Himed, Braham [3 ]
机构
[1] Stevens Inst Technol, Hoboken, NJ 07030 USA
[2] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[3] WPAFB, RF Technol Branch, Air Force Res Lab, AFRL RYMD, Dayton, OH 45433 USA
关键词
Knowledge-aided processing; multi-channel auto-regressive process; parametric adaptive matched filter; space-time adaptive processing (STAP); SIGNAL-DETECTION; AIRBORNE RADAR; NONHOMOGENEOUS ENVIRONMENTS; MATRICES; ALGORITHM; STAP;
D O I
10.1109/TSP.2014.2338838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a knowledge-aided parametric adaptive matched filter (KA-PAMF) is proposed that utilizing both observations (including the test and training signals) and a priori knowledge of the spatial covariance matrix. Unlike existing KA-PAMF methods, the proposed KA-PAMF is able to automatically adjust the combining weight of a priori covariance matrix, thus gaining enhanced robustness against uncertainty in the prior knowledge. Meanwhile, the proposed KA-PAMF is significantly more efficient than its KA nonparametric counterparts when the amount of training signals is limited. One distinct feature of the proposed KA-PAMF is the inclusion of both the test and training signals for automatic determination of the combining weights for the prior spatial covariance matrix and observations. Numerical results are presented to demonstrate the effectiveness of the proposed KA-PAMF, especially in the limited training scenarios.
引用
收藏
页码:4713 / 4722
页数:10
相关论文
共 25 条
[1]  
ABRAMOVICH YI, 2008, P SENS ARR MULT SIGN, P1
[2]   Two-Dimensional Multivariate Parametric Models for Radar Applications-Part I: Maximum-Entropy Extensions for Toeplitz-Block Matrices [J].
Abramovich, Yuri I. ;
Johnson, Ben A. ;
Spencer, Nicholas K. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (11) :5509-5526
[3]   Radar Detection of Distributed Targets in Homogeneous Interference Whose Inverse Covariance Structure is Defined via Unitary Invariant Functions [J].
Aubry, Augusto ;
De Maio, Antonio ;
Pallotta, Luca ;
Farina, Alfonso .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (20) :4949-4961
[4]   Maximum Likelihood Estimation of a Structured Covariance Matrix With a Condition Number Constraint [J].
Aubry, Augusto ;
De Maio, Antonio ;
Pallotta, Luca ;
Farina, Alfonso .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) :3004-3021
[5]  
Bergin J. S., 2002, HIGH FID SIT SPEC RA
[6]   Knowledge-aided Bayesian detection in heterogeneous environments [J].
Besson, Olivier ;
Tourneret, Jean-Yves ;
Bidon, Stephanie .
IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (05) :355-358
[7]   Regularized estimation of large covariance matrices [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (01) :199-227
[8]   A Bayesian approach to adaptive detection in nonhomogeneous environments [J].
Bidon, Stephanie ;
Besson, Olivier ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) :205-217
[9]   Knowledge-Aided STAP in Heterogeneous Clutter using a Hierarchical Bayesian Algorithm [J].
Bidon, Stephanie ;
Besson, Olivier ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (03) :1863-1879
[10]   Knowledge-Aided Bayesian Radar Detectors & Their Application to Live Data [J].
De Maio, A. ;
Farina, A. ;
Foglia, G. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2010, 46 (01) :170-183