An Energy-Efficient ECG Processor With Weak-Strong Hybrid Classifier for Arrhythmia Detection

被引:43
|
作者
Chen, Zhijian [1 ]
Luo, Jiahui [1 ]
Lin, Kaiwen [1 ]
Wu, Jiaquan [1 ]
Zhu, Taotao [1 ]
Xiang, Xiaoyan [2 ]
Meng, Jianyi [2 ]
机构
[1] Zhejiang Univ, Inst VLSI Design, Hangzhou 310027, Peoples R China
[2] Fudan Univ, State Key Lab ASIC & Syst, Shanghai 201203, Peoples R China
关键词
ECG; hybrid classifier; low power; arrhythmia detection; wireless monitoring; WAVELET TRANSFORM; QRS DETECTION; SYSTEM; ACQUISITION; FEATURES; SIGNALS;
D O I
10.1109/TCSII.2017.2747596
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents an energy-efficient electrocardiogram processor for arrhythmia detection with a weak-strong hybrid classifier that includes a weak linear classifier (WLC) and a strong support vector machine (SVM) classifier. WLC can only identify the beats with distinct characteristics by performing simple threshold comparisons based on beat interval feature and a novel morphology feature named QRS area ratio. The beats that are unclassified by WLC will activate the more powerful but energy-guzzling SVM classifier. Principal component analysis (PCA) is applied for feature dimension reduction to lower the complexity of SVM classifier and a sparse matrix computing architecture is exploited to reduce the computation burden of PCA. Implemented in SMIC 40LL CMOS process, the processor has a total area of 0.12 mm(2). It achieves 1.98-uW power consumption in WLC mode and 3.76-uW in SVM mode under 1.1-V voltage supply and 10-KHz operating frequency, with energy dissipation of 6.8/30.3 nJ per beat classification for the two modes, respectively. The overall accuracy for MIT-BIH arrhythmia database is 98.2% with energy reduction of 41.7% compared to a single SVM classifier.
引用
收藏
页码:948 / 952
页数:5
相关论文
共 50 条
  • [1] An Energy-Efficient ECG Processor Based on HDWT and a Hybrid Classifier for Arrhythmia Detection
    Deng, Jiawen
    Ma, Jieru
    Yang, Jie
    Liu, Shuyu
    Chen, Hongming
    Wang, Xin'an
    Zhang, Xing
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [2] Weak-strong uniqueness for energy-reaction-diffusion systems
    Hopf, Katharina
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (05): : 1015 - 1069
  • [3] Ensemble classifier fostered detection of arrhythmia using ECG data
    M. Ramkumar
    Manjunathan Alagarsamy
    A. Balakumar
    S. Pradeep
    Medical & Biological Engineering & Computing, 2023, 61 : 2453 - 2466
  • [4] ZEN: A flexible energy-efficient hardware classifier exploiting temporal sparsity in ECG data
    Jobst, Matthias
    Partzsch, Johannes
    Liu, Chen
    Guo, Liyuan
    Walter, Dennis
    Rehman, Saif-Ur
    Scholze, Stefan
    Hoppner, Sebastian
    Mayr, Christian
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 214 - 217
  • [5] Ensemble classifier fostered detection of arrhythmia using ECG data
    Ramkumar, M.
    Alagarsamy, Manjunathan
    Balakumar, A.
    Pradeep, S.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (09) : 2453 - 2466
  • [6] Energy-efficient reconfigurable AI processor
    Wu, Nanjian
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (05)
  • [7] An energy-efficient clustered superscalar processor
    Sato, T
    Chiyonobu, A
    IEICE TRANSACTIONS ON ELECTRONICS, 2005, E88C (04): : 544 - 551
  • [8] Energy-efficient reconfigurable AI processor
    Nanjian Wu
    Journal of Semiconductors, 2019, (05) : 5 - 5
  • [9] Energy-efficient reconfigurable AI processor
    Nanjian Wu
    Journal of Semiconductors, 2019, 40 (05) : 5
  • [10] Energy-Efficient Subthreshold Processor Design
    Zhai, Bo
    Pant, Sanjay
    Nazhandali, Leyla
    Hanson, Scott
    Olson, Javin
    Reeves, Anna
    Minuth, Michael
    Helfand, Ryan
    Austin, Todd
    Sylvester, Dennis
    Blaauw, David
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2009, 17 (08) : 1127 - 1137