Convergence rate of a quasilinear parabolic-elliptic chemotaxis system with logistic source

被引:3
|
作者
Zhao, Jie [1 ]
机构
[1] China West Normal Univ, Coll Math & Informat, Nanchong 637000, Peoples R China
关键词
Chemotaxis; Asymptotic behavior; Logistic source; BLOW-UP; ASYMPTOTIC STABILITY; BOUNDEDNESS;
D O I
10.1016/j.jmaa.2019.05.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the quasilinear parabolic-elliptic chemotaxis system {u(t) = del.(d(u) del u) - del . (chi u Delta v) +mu u(1- u) x is an element of Omega, t > 0 0= del v - v_u, x is an element of Omega, t > 0 under homogeneous Neumann boundary conditions in a bounded domain Omega subset of R-n with smooth boundary, where x > 0 and mu> 0. D(u) is supposed to satisfy D(0) > 0, D(u) >= u(alpha) with alpha is an element of (0,1). When n >= 2, the convergence rate of the solution is investigated. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:625 / 633
页数:9
相关论文
共 50 条