Physicochemical properties and drug release behavior of biguanidino and O-carboxymethyl chitosan microcapsules

被引:12
作者
Huo, Weiqiang [1 ]
Zhang, Weixin [2 ]
Wang, Wei [1 ]
Zhou, Xiaohua [1 ,3 ]
机构
[1] South China Agr Univ, Coll Sci, Guangzhou, Guangdong, Peoples R China
[2] South China Agr Univ, Coll Life Sci, Guangzhou, Guangdong, Peoples R China
[3] South China Agr Univ, Inst Biomat, Guangzhou, Guangdong, Peoples R China
关键词
Modified chitosan; Microcapsule; Drug release behavior; PROTEIN RELEASE; ORAL DELIVERY; CROSS-LINKING; CARRIER; MICROSPHERES; GLUTARALDEHYDE; DERIVATIVES; ALGINATE; MICROPARTICLES; NANOPARTICLES;
D O I
10.1016/j.ijbiomac.2014.06.049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two types of microcapsules (MCs) were prepared by the emulsion cross-linking method, where biguanidino chitosan (BGCS)and O-carboxymethyl chitosan (O-CMCS) served as the wall materials, and the antibacterial agent 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine (PyTNH) served as a model water-soluble drug. The physicochemical performance of the MCs and their drug release behavior were investigated by Fourier transform infrared spectroscopy, thermogravimetric analysis/derivative thermogravimetric analysis, scanning electron microscopy, and swelling and in vitro drug release studies of the two MCs with unmodified chitosan-MCs (CS-MCs) used as the control. The results indicated that the degree of cross-linking, encapsulation efficiency, and thermal stability of the shell wall of the BGCS-microcapsules (BGCS-MCs) were much higher than those of the control and the O-CMCS-microcapsules (CMCS-MCs), owing to the reduction of steric hindrance and development of the conjugation effect in the cross-linking process. Studies on the swelling and in vitro drug-release behavior revealed a sustained release effect of the BGCS-MCs. Moreover, the CMCS-MCs were found to exhibit a pH-dependent drug release behavior, which can be attributed to the successive formation of H-bonds and repulsive forces with the change in the pH of the medium. Based on these results, the swelling-release models and the drug release kinetics of BGCS-MCs and CMCS-MCs are proposed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 265
页数:9
相关论文
共 43 条
[1]   Recent advances on chitosan-based micro- and nanoparticles in drug delivery [J].
Agnihotri, SA ;
Mallikarjuna, NN ;
Aminabhavi, TM .
JOURNAL OF CONTROLLED RELEASE, 2004, 100 (01) :5-28
[2]   Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles [J].
Anitha, A. ;
Rani, V. V. Divya ;
Krishna, R. ;
Sreeja, V. ;
Selvamurugan, N. ;
Nair, S. V. ;
Tamura, H. ;
Jayakumar, R. .
CARBOHYDRATE POLYMERS, 2009, 78 (04) :672-677
[3]   Layer-by-layer self-assembled shells for drug delivery [J].
Ariga, Katsuhiko ;
Lvov, Yuri M. ;
Kawakami, Kohsaku ;
Ji, Qingmin ;
Hill, Jonathan P. .
ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (09) :762-771
[4]   Chitosan beads for the delivery of salmon calcitonin: Preparation and release characteristics [J].
Aydin, Z ;
Akbuga, J .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1996, 131 (01) :101-103
[5]   Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: Ex vivo and in vivo studies [J].
Bayat, Akbar ;
Dorkoosh, Farid A. ;
Dehpour, Ahmad Reza ;
Moezi, Leila ;
Larijani, Bagher ;
Junginger, Hans E. ;
Rafiee-Tehrani, Morteza .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2008, 356 (1-2) :259-266
[6]   Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres [J].
Bhattacharya, Shiv Sankar ;
Mazahir, Farhan ;
Banerjee, Subham ;
Verma, Anurag ;
Ghosh, Amitava .
CARBOHYDRATE POLYMERS, 2013, 98 (01) :64-72
[7]   PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release [J].
Bhattarai, N ;
Ramay, HR ;
Gunn, J ;
Matsen, FA ;
Zhang, MQ .
JOURNAL OF CONTROLLED RELEASE, 2005, 103 (03) :609-624
[8]   Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices [J].
Chen, LY ;
Tian, ZG ;
Du, YM .
BIOMATERIALS, 2004, 25 (17) :3725-3732
[9]   Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions [J].
Chen, XG ;
Park, HJ .
CARBOHYDRATE POLYMERS, 2003, 53 (04) :355-359
[10]   Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups [J].
Chiou, SH ;
Wu, WT .
BIOMATERIALS, 2004, 25 (02) :197-204