Nonlocal Shape Optimization Via Interactions of Attractive and Repulsive Potentials

被引:26
作者
Burchard, Almut [1 ]
Choksi, Rustum [2 ]
Topaloglu, Ihsan [3 ]
机构
[1] Univ Toronto, 40 St George St, Toronto, ON M5S 2E4, Canada
[2] McGill Univ, Dept Math & Stat, Burnside Hall,805 Rue Sherbrooke Ouest 1005, Montreal, PQ H3A 0B9, Canada
[3] Virginia Commonwealth Univ, Dept Math & Appl Math, 1015 Floyd Ave, Richmond, VA 23284 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Nonlocal shape optimization; pair-wise interactions (potentials); global; minimizers; self-assembly; VOLUME-FRACTION LIMIT; ISOPERIMETRIC PROBLEM; INTERACTION ENERGY; LOCAL MINIMIZERS; OBSTACLE PROBLEM; R-N; MODEL; EXISTENCE; EQUILIBRIA; REGULARITY;
D O I
10.1512/iumj.2018.67.6234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of nonlocal shape optimization problems for sets of fixed mass where the energy functional is given by an attractive/repulsive interaction potential in power-law form. We find that the existence of minimizers of this shape optimization problem depends crucially on the value of the mass. Our results include existence theorems for large mass and nonexistence theorems for small mass in the class where the attractive part of the potential is quadratic. In particular, for the case where the repulsion is given by the Newtonian potential, we prove that there is a critical value for the mass, above which balls are the unique minimizers, and below which minimizers fail to exist. The proofs rely on a relaxation of the variational problem to bounded densities, and recent progress on nonlocal obstacle problems.
引用
收藏
页码:375 / 395
页数:21
相关论文
共 35 条
[1]   Gamma-convergence of nonlocal perimeter functionals [J].
Ambrosio, Luigi ;
De Philippis, Guido ;
Martinazzi, Luca .
MANUSCRIPTA MATHEMATICA, 2011, 134 (3-4) :377-403
[2]   Dimensionality of Local Minimizers of the Interaction Energy [J].
Balague, D. ;
Carrillo, J. A. ;
Laurent, T. ;
Raoul, G. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (03) :1055-1088
[3]  
BANDEGI M., 2015, APPROXIMATE GLOBAL M
[4]   A Primer of Swarm Equilibria [J].
Bernoff, Andrew J. ;
Topaz, Chad M. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (01) :212-250
[5]   LOCAL AND GLOBAL MINIMALITY RESULTS FOR A NONLOCAL ISOPERIMETRIC PROBLEM ON RN [J].
Bonacini, M. ;
Cristoferi, R. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) :2310-2349
[6]   OPTIMAL DISTRIBUTION OF OPPOSITELY CHARGED PHASES: PERFECT SCREENING AND OTHER PROPERTIES [J].
Bonacini, Marco ;
Knuepfer, Hans ;
Roeger, Matthias .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) :1128-1154
[7]  
Burchard A., 2009, A short course on rearrangement inequalities
[8]   Nonlocal Minimal Surfaces [J].
Caffarelli, L. ;
Roquejoffre, J. -M. ;
Savin, O. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) :1111-1144
[9]   The obstacle problem revisited [J].
Caffarelli, LA .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :383-402
[10]   Existence of Compactly Supported Global Minimisers for the Interaction Energy [J].
Canizo, Jose A. ;
Carrillo, Jose A. ;
Patacchini, Francesco S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :1197-1217