Summation of all-loop UV divergences in maximally supersymmetric gauge theories

被引:14
作者
Borlakov, A. T. [1 ,3 ]
Kazakov, D. I. [1 ,2 ,3 ]
Tolkachev, D. M. [1 ,4 ]
Vlasenko, D. E. [5 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna, Russia
[2] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[4] Stepanov Inst Phys, Minsk, BELARUS
[5] South Fed State Univ, Dept Phys, Rostov Na Donu, Russia
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2016年 / 12期
基金
俄罗斯科学基金会;
关键词
Field Theories in Higher Dimensions; Renormalization Group; Scattering Amplitudes; Supersymmetric gauge theory; AMPLITUDES;
D O I
10.1007/JHEP12(2016)154
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the leading and subleading UV divergences for the four-point on shell scattering amplitudes in D=6,8,10 supersymmetric Yang-Mills theories in the planar limit. These theories belong to the class of maximally supersymmetric gauge theories and presumably possess distinguished properties beyond perturbation theory. In the previous works, we obtained the recursive relations that allow one to get the leading and subleading divergences in all loops in a pure algebraic way. The all loop summation of the leading divergences is performed with the help of the differential equations which are the generalization of the RG equations for non-renormalizable theories. Here we mainly focus on solving and analyzing these equations. We discuss the properties of the obtained solutions and interpretation of the results. The key issue is that the summation of infinite series for the leading and the subleading divergences does improve the situation and does not allow one to remove the regularization and obtain the finite answer. This means that despite numerous cancellations of divergent diagrams these theories remain non-renormalizable.
引用
收藏
页数:18
相关论文
共 19 条
  • [1] [Anonymous], ARXIV13081697
  • [2] Bartels J, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2015)098
  • [3] Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond
    Bern, Z
    Dixon, LJ
    Smirnov, VA
    [J]. PHYSICAL REVIEW D, 2005, 72 (08)
  • [4] Basics of generalized unitarity
    Bern, Zvi
    Huang, Yu-tin
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (45)
  • [5] Amplitudes and ultraviolet behavior of N=8 supergravity
    Bern, Zvi
    Carrasco, John Joseph
    Dixon, Lance J.
    Johansson, Henrik
    Roiban, Radu
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2011, 59 (7-8): : 561 - 578
  • [6] Simple superamplitudes in higher dimensions
    Boels, Rutger H.
    O'Connell, Donal
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [7] Bogolyubov N.N., 1957, INTRO THEORY QUANTIZ
  • [8] Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions
    Bork, L. V.
    Kazakov, D. I.
    Kompaniets, M. V.
    Tolkachev, D. M.
    Vlasenko, D. E.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11): : 1 - 39
  • [9] Challenges of D=6 N = (1,1) SYM theory
    Bork, L. V.
    Kazakov, D. I.
    Vlasenko, D. E.
    [J]. PHYSICS LETTERS B, 2014, 734 : 111 - 115
  • [10] Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space
    Broedel, Johannes
    Sprenger, Martin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05): : 1 - 31