Ancient Solutions of Geometric Flows with Curvature Pinching

被引:13
作者
Risa, Susanna [1 ]
Sinestrari, Carlo [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Via Politecn 1, I-00133 Rome, Italy
关键词
Ancient solutions; Mean curvature flow; Gauss curvature flow; Geometric flows; DEFORMING CONVEX HYPERSURFACES; POWERS; CLASSIFICATION; SINGULARITIES; SUBMANIFOLDS; CONTRACTION; ENTROPY; ROOT;
D O I
10.1007/s12220-018-0036-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find pinching conditions on the second fundamental form that characterize the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension greater than one, and for some nonlinear curvature flows of hypersurfaces.
引用
收藏
页码:1206 / 1232
页数:27
相关论文
共 47 条